1. Suppose $a(t)=1+0.02 t+0.001 t^{2}$
(a) Find i_{3}, the effective interest rate for the third year. [0.023946]
(b) Find $i_{[3,5]}$, the effective interest rate for the time period from 3 to 5. [0.052385]
(c) Given an initial deposit of 25 , what will be the accumulated amount at time 5 ? [28.125]
(d) Given an initial deposit of 25 , what will be the interest earned in the fifth year? [0.725]
2. A loan is made at time 0 at simple interest at an annual rate of 5%.
(a) In which year is the effective rate $1 / 23$? [4]
(b) What is the effective rate for the interval $[4,6]$? [0.0833]
3. Assuming simple interest
(a) With $i=0.03$, an initial deposit of $K=2500$, and $A(t)=3200$, find t. [9.33]
(b) With an interest rate of 5% and an initial deposit of 3000 , find the accumulated value at time 6.5. [3975]
(c) How much would you need to deposit now in order to have 10000 in ten years with simple interest credited at a rate of 8% per year? [5555.55]
(d) Suppose that an initial deposit of 5000 increases to 8000 in 10 years, find the annual interest rate. [0.06]
(e) You deposit 100 at time 0. For the first three years you earn 3% each year, for the next two you earn 4%, and for the final year you earn 6%. How much is in the account after the end of the six years? (Note that for simple interest the principal
will be the same (100) for each period.) [123]
(f) You deposit 100 at time 0. Accounts earn 2% per year under 125, 3\% per year between 125 and 200 and then 4% per year above 200 . When will the account have a balance of 225 ? [43.75]
4. Rework the previous problem assuming compound interest. [8.35; 4119.57; 4631.93; 0.04812 ; 125.28; 30.172]
5. Suppose that $a(t)=\alpha+\beta t+\gamma t^{2}$, find the values of α, β, and γ given that $i_{1}=0.05$ and $i_{[0,2]}=0.12 .[\alpha=1 ; \beta=0.04 ; \gamma=0.01]$
6. Under annually compounding interest with a positive interest rate, the effective interest rate for $[8,14]$ is 2.1 times the effective interest rate for $[3,6]$. Find the annual interest rate i. [3.23\%]
7. Account A has 100 dollars at time 0 and grows at a simple interest rate of 0.05 . Account B has x dollars at time 0 and grows at a compound interest rate of 0.03 . At time $t=9$, accounts A and B are equal. Solve for x. [111.13]
8. Richard has 1500 dollars. He wants to have 2500 dollars in 10 years. His bank will pay him simple interest i for 5 years, after which it will pay him compound interest i for 5 more years. Solve for i. You may use software to solve the final equation (e.g. Wolfram Alpha). [0.0550203]
9. Find and work 5 more practice problems. These will be graded, so be sure to include them in your submitted assignment. You can find them:

- In the online practice problems
- In the study manuals in the library
- In the book
- Ask the TA's to write one
- In your purchased software (Infinite Actuary, Coaching Actuaries, Actex, etc.)

