Stat 274 - Homework Assignment 1 Solution

1. Suppose $a(t)=1+0.02 t+0.001 t^{2}$
(a) Find i_{3}, the effective interest rate for the third year. [0.023946]

Answer:

$$
i_{3}=\frac{a(3)-a(2)}{a(2)}=\frac{1.069-1.044}{1.044}=.023946
$$

(b) Find $i_{[3,5]}$, the effective interest rate for the time period from 3 to 5 . [0.052385]

Answer:

$$
i_{[3,5]}=\frac{a(5)-a(3)}{a(3)}=\frac{1.125-1.069}{1.069}=.052385
$$

(c) Given an initial deposit of 25 , what will be the accumulated amount at time 5 ? [28.125]
Answer:

$$
A(5)=25 * a(5)=25 * 1.125=28.125
$$

(d) Given an initial deposit of 25 , what will be the interest earned in the fifth year? [0.725]
Answer:

$$
I_{5}=A(5)-A(4)=25[a(5)-a(4)]=25[1.125-1.096]=.725
$$

2. A loan is made at time 0 at simple interest at an annual rate of 5%.
(a) In which year is the effective rate $1 / 23$? [4]

Answer:

$$
\begin{aligned}
\frac{1}{23} & =\frac{s}{1+s(n-1)}=\frac{.05}{1+.05(n-1)}=\frac{.05}{.95+.05 n} \\
n & =4
\end{aligned}
$$

(b) What is the effective rate for the interval $[4,6]$? [0.0833]

Answer:
Recall, with simple interest: $\mathrm{a}(\mathrm{t})=1+\mathrm{st}$

$$
i_{[4,6]}=\frac{a(6)-a(4)}{a(4)}=\frac{1.3-1.2}{1.2}=.0833
$$

3. Assuming simple interest
(a) With $i=0.03$, an initial deposit of $K=2500$, and $A(t)=3200$, find t. [9.33]

Answer:

$$
\begin{aligned}
A(t) & =k * a(t) \\
3200 & =2500[1+.03(t)] \\
t & =9.33
\end{aligned}
$$

(b) With an interest rate of 5% and an initial deposit of 3000 , find the accumulated value at time 6.5. [3975]
Answer:

$$
A(6.5)=3000 * a(6.5)=3000[1+.05(6.5)]=3975
$$

(c) How much would you need to deposit now in order to have 10000 in ten years with simple interest credited at a rate of 8% per year? [5555.55]
Answer:

$$
k=\frac{A(t)}{a(t)}=\frac{10000}{1+.08(10)}=5555.55
$$

(d) Suppose that an initial deposit of 5000 increases to 8000 in 10 years, find the annual interest rate. [0.06]
Answer:

$$
\begin{aligned}
8000 & =5000(1+10 i) \\
i & =0.06
\end{aligned}
$$

(e) You deposit 100 at time 0. For the first three years you earn 3% each year, for the next two you earn 4%, and for the final year you earn 6%. How much is in the account after the end of the six years? (Note that for simple interest the principal will be the same (100) for each period.) [123]
Answer:

$$
100[(1+0.03(3))+(0.04(2))+(0.06(1))]=123
$$

(f) You deposit 100 at time 0. Accounts earn 2% per year under 125, 3\% per year between 125 and 200 and then 4% per year above 200 . When will the account have a balance of 225 ? [43.75]

Answer:

$$
\begin{array}{ll}
125=100\left(1+0.02 t_{1}\right) & t_{1}=12.5 \\
200-125=75=100\left(.03 t_{2}\right) & t_{2}=25 \\
225-200=25=100\left(.04 t_{3}\right) & t_{3}=6.25 \\
t_{1}+t_{2}+t_{3}=43.75 &
\end{array}
$$

4. Rework the previous problem assuming compound interest. [8.35; 4119.57; 4631.93; 0.04812; 125.28; 30.172]

Answer:
(a)

$$
\begin{aligned}
2500(1.03)^{t} & =3200 \\
t=\frac{\log (1.28)}{\log (1.03)} & =8.35
\end{aligned}
$$

(b)

$$
3000(1.05)^{6.5}=4119.57
$$

(c)

$$
\begin{aligned}
k *(1.08)^{10} & =10000 \\
k & =4631.93
\end{aligned}
$$

(d)

$$
\begin{aligned}
5000(1+i)^{10} & =8000 \\
1+i & =\left(\frac{8000}{5000}\right)^{1 / 10} \\
i & =.04812
\end{aligned}
$$

(e)

$$
100(1.03)^{3}(1.04)^{2}(1.06)=125.28
$$

(f)

$$
\begin{aligned}
& 100(1.02)^{t_{1}}=125 \longrightarrow t_{1}=11.268 \\
& 125(1.02)^{t_{2}}=200 \longrightarrow t_{2}=15.901 \\
& 200(1.04)^{t_{3}}=225 \longrightarrow t_{3}=3.003 \\
& t_{1}+t_{2}+t_{3}=30.172
\end{aligned}
$$

5. Suppose that $a(t)=\alpha+\beta t+\gamma t^{2}$, find the values of α, β, and γ given that $i_{1}=0.05$ and $i_{[0,2]}=0.12 .[\alpha=1 ; \beta=0.04 ; \gamma=0.01]$
Answer:

$$
\begin{aligned}
a(t) & =\alpha+\beta t+\gamma t^{2} \\
a(0) & =1 \longrightarrow \alpha=1 \\
\frac{a(1)-a(0)}{a(0)} & =\frac{1+\beta+\gamma-1}{1}=\beta+\gamma=.05 \\
\frac{a(2)-a(0)}{a(0)} & =\frac{1+2 \beta+4 \gamma-1}{1}=2 \beta+4 \gamma=.12
\end{aligned}
$$

Solving, we get $\beta=0.04$ and $\gamma=.01$
6. Under annually compounding interest with a positive interest rate, the effective interest rate for $[8,14]$ is 2.1 times the effective interest rate for $[3,6]$. Find the annual interest rate i. [3.23\%]

Answer:

$$
\begin{aligned}
2.1\left((1+i)^{3}-1\right) & =(1+i)^{6}-1 \\
2.1(1+i)^{3}-2.1 & =(1+i)^{6}-1 \\
0 & =(1+i)^{6}-2.1(1+i)^{3}+1.1 \\
\text { Substitute } x=(1+i)^{3} & \\
0 & =x^{2}-2.1 x+1.1 \\
x & =\frac{2.1 \pm \sqrt{2.1^{2}-4 \cdot 1 \cdot 1.1}}{2} \\
x & =\{1,1.1\} \\
i & =\{0,0.03228\}
\end{aligned}
$$

7. Account A has 100 dollars at time 0 and grows at a simple interest rate of 0.05 . Account B has x dollars at time 0 and grows at a compound interest rate of 0.03 . At time $t=$ 9, accounts A and B are equal. Solve for x. [111.13]

Answer:

$$
\begin{aligned}
100(1+0.05(9)) & =x(1+0.03)^{9} \\
x & =111.13
\end{aligned}
$$

8. Richard has 1500 dollars. He wants to have 2500 dollars in 10 years. His bank will pay him simple interest i for 5 years, after which it will pay him compound interest i for 5 more years. Solve for i. You may use software to solve the final equation. [0.0550203] Answer:

$$
\begin{aligned}
2500 & =1500(1+5 i)(1+i)^{5} \\
i & =0.0550203
\end{aligned}
$$

