Stat 274

Homework Assignment 2 Solution

1. Suppose you deposit 10000 in an account with annually compounding interest of $i=$ 0.05 and withdraw the money when the account reaches 15000 .
(a) How long will it take? [8.3104]

Answer:

$$
\begin{aligned}
10000(1.05)^{t} & =15000 \\
(1.05)^{t} & =1.5 \\
t & =8.3104
\end{aligned}
$$

(b) Find I_{2} the amount of interest earned during the second year. [525] Answer:

$$
10000\left[(1.05)^{2}-1.05\right]=525
$$

(c) Find $I_{[7,9]}$ the amount of interest earned from time 7 to time 9. [928.996]

Answer:
Since $\$ 15000$ is reached before time 9 , we calculate the amount of interest earned from time 7 until there is $\$ 15000$ in the account.

$$
15000-(1.05)^{7} * 10000=928.996
$$

(d) What is the total interest paid on this transaction? [5000]

Answer:

$$
15000-10000=5000
$$

2. Find the accumulated value of 2480 at the end of twelve years if the nominal interest rate was 2% monthly for the first three years, the nominal rate of discount was 3% semiannually for the next two years and the rate of interest (convertible semiannually) was 4.2% for the next four years, and the annual effective rate of discount was 0.058 for the last three years. [3951.81]
Answer:

$$
2480\left(1+\frac{.02}{12}\right)^{3 * 12}\left(1-\frac{.03}{2}\right)^{-2 * 2}\left(1+\frac{.042}{2}\right)^{4 * 2}(1-.058)^{-3}=3951.81
$$

3. Given equivalent rates $i^{(m)}=0.0469936613$ and $d^{(m)}=0.046773854$, find m. [10]

Answer:

$$
\begin{aligned}
i^{(m)} & =\frac{d^{(m)}}{1-\frac{d^{(m)}}{m}} \\
.0469936613 & =\frac{.046773854}{1-\frac{.046773854}{m}} \\
m & =10.0
\end{aligned}
$$

4. A savings account starts with 1000 and a level annual effective discount rate of 6.4%. Find the accumulated value at time 5. [1391.94]
Answer:

$$
1000(1-.064)^{-5}=1391.94
$$

5. The amount of (compound) interest on X for two years is 320 . The amount of discount on X for one year is 148 (meaning that $X-148$ at time 0 turns into X at time 1). Find the effective interest rate i and the value of X. [0.05311; 2934.68]
Answer:

$$
\begin{align*}
X d & =148 \\
X \frac{i}{1+i} & =148 \\
X & =148 \frac{1+i}{i} \tag{*}\\
X\left((1+i)^{2}-1\right) & =320 \\
X\left(i^{2}+2 i\right) & =320
\end{align*}
$$

Substitute (*) into (**)

$$
\begin{aligned}
148 \frac{1+i}{i}\left(1^{2}+2 i\right) & =320 \\
i^{2}+3 i-\frac{24}{148} & =0 \\
\frac{-3 \pm \sqrt{3^{2}-4(1)\left(\frac{-24}{148}\right)}}{2} & =0 \\
i & =.05311 \quad \text { plug into }\left({ }^{*}\right) \\
X & =2934.68
\end{aligned}
$$

6. Given that $\delta_{t}=\frac{3 t^{2}}{\left(1+t^{3}\right)}$
(a) Find $a(t)$

Answer:

$$
\begin{aligned}
\delta_{t} & =\frac{a^{\prime}(t)}{a(t)} \\
a(t) & =1+t^{3}
\end{aligned}
$$

(b) Assuming an initial deposit of 2500 , find $I_{[4,7]}$. [697500]

Answer:

$$
\begin{aligned}
I_{[4,7]} & =k(a(7)-a(4)) \\
& =2500(344-65)=697500
\end{aligned}
$$

7. Given $a(t)=e^{0.04 t+0.002 t^{2}}$ find δ_{3}. [0.052]

Answer:

$$
\begin{aligned}
\delta_{t} & =\frac{d}{d t} \log a(t) \\
& =\frac{d}{d t} 0.04 t+0.002 t^{2} \\
& =0.04+0.004 t \\
\delta_{3} & =.052
\end{aligned}
$$

8. Alicia goes to the bank to finance a car. The banker gives her the option of an annual effective interest rate of 0.047 or an annual effective discount rate of 0.045 . Which option should she choose? [The interest rate.]
Answer:

$$
d=0.045
$$

converting the discount rate to an interest rate we get:

$$
\begin{aligned}
i & =\frac{0.045}{1-0.045} \\
& =0.0471
\end{aligned}
$$

$0.0471>0.047$ so we choose the interest rate of 0.047 , not the discount rate of 0.045 . Because we are borrowing the money, we want the lower interest rate.
9. Find and work 5 more practice problems. These will be graded, so be sure to include them in your submitted assignment. You can find them:

- In the online practice problems
- In the study manuals in the library
- In the book
- Ask the TA's to write one
- In your purchased software (Infinite Actuary, Coaching Actuaries, Actex, etc.)

