Stat 274 — Winter 2024

Homework Assignment 7

Due: Thursday, April 4th on Learning Suite at 9:30 am

1. You will pay $2,318.63$ for an n-year 2,000 par-value bond with a coupon rate of 10% compounded semiannually or pay $2,531.05$ for an n-year 2,000 par-value bond with a coupon rate of 11% compounded semiannually. Assuming that you get the same yield on the two bonds, find the nominal annual yield rate (compounded semiannually) and n. [8.5\%, 28]
Answer:

$$
\begin{align*}
& 2531.05=110 a_{\overline{2 n j}}+2000 v_{j}^{2 n} \tag{1}\\
& 2318.63=100 a_{\overline{2 n} j}+2000 v_{j}^{2 n} \tag{2}
\end{align*}
$$

Subtract (2) from (1) to get:

$$
\begin{aligned}
& 212.42=10 a_{\overline{2 n} j} \\
& 21.242=a_{\overline{2 n} j}
\end{aligned}
$$

Substitute back into (1) and solve for $v_{j}^{2 n}$

$$
\begin{aligned}
2531.05 & =110(21.242)+2000 v_{j}^{2 n} \\
v_{j}^{2 n} & =.097215 \\
21.242 & =\frac{1-.097215}{j} \\
j & =0.0425 \\
v_{j}^{2 n}=\left[\frac{1}{1.0425}\right]^{2 n} & =0.097215 \\
2 n & =56 \\
n & =28
\end{aligned}
$$

2. You own a 3,000 par-value 12% bond with semiannual coupons. The bond will mature at the end of fourteen years. You decide a ten-year bond will be preferable. The current yield rate (for both bonds) is 6% convertible semiannually. You use the proceeds from the sale of the 12% bond to by an 8% bond also with semiannual coupons maturing at par at the end of ten years. Find the face value of the 8% bond. [4081.54]
Answer:

$$
\begin{aligned}
P V & =180 a_{\overline{28.03}}+3000 v_{.03}^{28} \\
& =4688.77 \\
4688.77 & =F(.04) a_{\overline{20.03}}+F v_{.03}^{20} \\
4688.77 & =F\left((.04) a_{\overline{20.03}}+v_{.03}^{20}\right) \\
F & =4081.54
\end{aligned}
$$

3. A 3,000 9% twelve-year bond with annual coupons is purchased with a discount of 57 and yields 9.1% if held to maturity. Find the price. [2997.95]

Answer:

$$
\begin{aligned}
C-P & =C(j-g) a_{\overline{n i}} \\
57 & =(C(.091)-3000(.09)) a_{\overline{12.091}} \\
C & =3054.95 \\
P & =C-57=2997.95
\end{aligned}
$$

4. You buy a newly issued $1,00020 \%$ ten-year bond, redeemable at 1,100 and having yearly coupons, for 1,400 . You immediately take a constant amount D from each coupon and deposits it in another account earning 8% effective annual interest, so as to accumulate the full amount of the premium the moment after the final deposit. Find D. [20.71]
Answer:

$$
\begin{aligned}
\text { Premium } & =P-C=1400-1100=300 \\
300 & =D s_{\overline{10.08}} \\
20.709 & =D
\end{aligned}
$$

5. A $2,00011 \%$ ten-year bond has semiannual coupons and is sold to yield 5.2% convertible semiannually. The discount on the bond is 83.28 . Find the redemption amount. [4438.18]

Answer:

$$
\begin{aligned}
83.28 & =(C(.026)-110) a_{\overline{20.026}} \\
C & =4438.18
\end{aligned}
$$

6. You purchase a ten-year 1,000 bond with semiannual coupons for 982 . The bond has a 1,100 redemption payment at maturity, a nominal coupon rate of 7% for the first five years, and a nominal coupon rate of $q \%$ for the final five years. Christie calculated that her annual effective yield for the ten-year period was 7.35%. Find q. [5.216\%]

Answer:

$$
\begin{aligned}
982 & =35 a_{\overline{10.0361}}+\left(\frac{g}{2}\right) 1000 a_{\overline{10.0361}} v_{.0361}^{10}+1100 v_{.0361}^{20} \\
982 & =35(8.271)+500 g(8.271)(.7014)+1100(.4920) \\
g & =.05216
\end{aligned}
$$

7. A 1,000 bond with a coupon rate of 8% has quarterly coupons and is redeemable after an unspecified number of years at 957 . The bond is bought to yield 12% convertible quarterly. If the present value of the redemption amount is 231.59 , find the purchase price of this bond.
[736.93]
Answer:

$$
\begin{aligned}
231.59 & =957 v^{n} \\
\frac{231.59}{957} & =1.03^{-n} \\
\log \left(\frac{231.59}{957}\right) & =-n \log (1.03) \\
n & =-\frac{\log \left(\frac{231.59}{957}\right)}{\log (1.03)}=48 \\
P & =20 a_{\overline{48}}+231.59=736.93
\end{aligned}
$$

8. A 20,000 bond has annual coupons and is redeemable at the end of fourteen years for 22,600 . It has a base amount equal to 18,450 when purchased to yield 6%. Find its base amount if it were purchased to yield 7\%. [15814.29]

Answer:

$$
\begin{aligned}
G & =F r / j \\
18450 & =20000 r / .06 \\
r & =0.05535 \\
G & =20000(.05535) / .07 \\
G & =15814.29
\end{aligned}
$$

9. Joey purchased an n-year par-value 2,000 bond that had a coupon rate of 9% convertible quarterly. Todd purchased a par-value bond with an identical coupon rate but having a term of $2 n$ years. The coupons that Joey and Todd received in the first n years were identical and both bonds had a yield rate of 6% convertible quarterly. Todd paid 233.02 more than Joey. Calculate n. Note that $4 n$ must be an integer. [7.75]

Answer:

$$
\begin{aligned}
233.02 & =45 a_{\overline{8 n .015}}+2000 v_{.015}^{8 n}-45 a_{\overline{4 n .015}}-2000 v_{.015}^{4 n} \\
& =45\left(a_{\overline{8 n} .015}-a_{\overline{4 n .015}}\right)+2000\left(v_{.015}^{8 n}-v_{.015}^{4 n}\right) \\
& =45 a_{\overline{4 n .015}} v_{.015}^{4 n}+2000\left(v_{.015}^{8 n}-v_{.015}^{4 n}\right) \\
& =45\left(\frac{1-v_{.015}^{4 n}}{.015}\right) v_{.015}^{4 n}+2000\left(v_{.015}^{8 n}-v_{.015}^{4 n}\right) \\
& =3000\left(v_{.015}^{4 n}-v_{.015}^{8 n}\right)+2000\left(v_{.015}^{8 n}-v_{.015}^{4 n}\right) \\
233.02 & =1000\left(v_{.015}^{4 n}-v_{.015}^{8 n}\right) \\
.23302 & =v_{.015}^{4 n}-v_{.015}^{8 n}
\end{aligned}
$$

Let $\mathrm{X}=v_{.015}^{4 n}$

$$
0=-X^{2}+X-.23302
$$

Using the quadratic equation, $X=v_{.015}^{4 n}=.630307$

$$
n=7.750
$$

10. Find and work 5 more practice problems on bonds. You can find those:

- In the online practice problems
- In the study manuals
- In the book
- Ask the TA's to write one
- In your purchased software (Infinite Actuary, Coaching Actuaries, Actex, etc.)

