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Types of Annuities

Annuity-immediate: Stream of payments at the end of each
period.

Annuity-due: Stream of payments at the beginning of each
period.

Perpetuity: Stream of payments without an end time.

2



Annuities-immediate

An n-year annuity-immediate pays 1 at times 1, 2, 3, . . . , n. Those
payments are worth (at time 0)

v(1) + v(2) + v(3) + · · ·+ v(n)

When we have compound interest then v(t) = (1 + i)−t = v t and
the present value becomes

an i = v + v2 + v3 + . . .+ vn =
1− vn

i
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Future Value

The future value (at time t) of the annuity is denoted sn . We have
the following general relationships.

sn = a(n)an and an = v(n)sn

When a(n) = (1 + i)n,

sn i = (1 + i)nan i and an i = vnsn i

sn i = (1 + i)n−1 + (1 + i)n−2 + · · ·+ 1 =
(1 + i)n − 1

i
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Equation of value

The value of n end-of-period payments each of amount Q is equal
to L,

Qan i = L.

Then the amount of each payment is equal to:

Q =
L

an i
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Example

You can make monthly payments of 500 and have an 1800 down
payment. You qualify for a 36-month auto loan at a nominal rate
of 4.8% convertible monthly. For how much car do you qualify?
[18532.94]
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Annuities-due

An n-year annuity-due pays 1 at times 0, 1, 2, . . . , n − 1. Those
payments are worth (at time 0)

v(0) + v(1) + v(2) + · · ·+ v(n − 1)

When we have compound interest then v(t) = (1 + i)−t = v t and
the present value becomes

än i = 1 + v + v2 + . . .+ vn−1 =
1(1− vn)

1− v
=

1− vn

d
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Future Value

The future value (at time t) of the annuity is denoted sn . We have
the following general relationships.

s̈n = a(n)än and än = v(n)s̈n

When a(n) = (1 + i)n,

s̈n i = (1 + i)nän i and än i = vn s̈n i

s̈n i = (1 + i)n + (1 + i)n−1 + · · ·+ (1 + i) =
(1 + i)n − 1

d
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Examples

1 You deposit 100 into an account at the beginning of each
month for 12 months. Calculate the value of that account at
the end of the year with a nominal discount rate of 4.8%
payable monthly. [1231.79]

2 You owe your brother 1000, but he will accept 30 monthly
payments at the beginning of each month at 2.5% nominal
interest payable monthly. How big do your payments have to
be? [34.35]

3 You just turned 30. You deposit 400 on every birthday
(including today) through your 64th. On your 65th birthday
you withdraw X and continue to withdraw X on each birthday
through your 80th. Assuming you earn 6% per year before 65
and 5% per year after, calculate X . [4152]

4 Repeat the above problem assuming you earn 6% per year
before 64 and 5% per year after. [4112.83]
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Comparison of due and immediate

You can think of an annuity-immediate as an annuity-due pushed
one period in the future.

än i = (1 + i)an i and s̈n i = (1 + i)sn i

Also,
än i = an−1 i + 1 and s̈n i + 1 = sn+1 i
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Examples

Assume an annual rate of 6%.

1 You just turned 30. You want to buy an annuity which will
pay 1000 per year on each of your 65th through 80th
birthdays. How much is that annuity worth today? [1393.72]

2 You buy an annuity which pays 100 at times 0, 1, 2, . . ., 29.
You need to pay for it at time 15. How much will it cost?
[3496.75]

3 You buy an annuity which pays 100 at times 0, 1, 2, . . ., 29.
You need to pay for it when you die at time 45. How much
will it cost? [20,083.56]
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Continuous Annuities

What if you receive payments continuously for a whole year?

ān =

∫ n

0
(1 + i)−tdt

=

[
−(1 + i)−t

log(1 + i)

]n
0

=
1− (1 + i)−n

log(1 + i)

=
1− (1 + i)−n

δ

Similarly,

s̄n =
(1 + i)n − 1

δ
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Perpetuities

As we take the limit of an i as n → ∞ we find,

a∞ i =
1

i

and

ä∞ i =
1

d

which is how much you would have to invest to earn 1 every period
forever.
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Examples

You have three children, two responsible ones (Arnold and Bridget)
and one less so (Cameron). You give them an equal inheritance (in
value at the time of your death). Arnold and Bridget split an
annual payment at the beginning of the first ten years, starting at
the moment of death. After 10 years, Cameron receives the both
payments in perpetuity. Calculate the annual effective interest
rate. [0.116123]
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Geometrically Increasing Annuities

The value (at time 0) of an annuity which pays P at time 1 and
P(1 + g)k−1 at time k is:

P

1−
(
1+g
1+i

)n

i − g

 =
Pän j

1 + i
where j =

i − g

1 + g

If i = g then the time 0 value is:

nP

1 + i

15



Examples

1 You purchase an annuity-immediate with 25 annual payments.
The first payment is 800 and the payments increase by 3%
each year. Using an annual interest rate of 7%, calculate the
present value of this annuity. [12,284.46]

2 You purchase an annuity-immediate with 25 annual payments.
The first payment is 800 and the payments increase by 3%
each year. Using an annual interest rate of 3%, calculate the
present value of this annuity. [19,417.48]

3 You purchase an annuity-immediate with 25 annual payments.
The first payment is 800 and the payments increase by 3%
each year. Using an annual interest rate of 1%, calculate the
present value of this annuity. [25,306.48]
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Geometrically Increasing Perpetuities

The value (at time 0) of a perpetuity which pays P at time 1 and
P(1 + g)k−1 at time k is:

limn→∞
P
[
1−

(
1+g
1+i

)n]
i − g

=
P

i − g
for i > g

If g ≥ i , the present value is infinite because the future payments
will be worth at least as much as the earlier payments.
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Arithmetically Increasing Annuities

Consider an annuity lasting n periods with a payment of
P + Q(j − 1) at the end of the j th interest period.

(IP,Qs)n i = Psn i +
Q

i
(sn i − n)

Multiplying by vn,

(IP,Qa)n i = Pan i +
Q

i
(an i − nvn)
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Arithmetically Increasing Annuities

When P = Q = 1, we can simply drop the P and Q,

(Is)n i =
sn+1 i − (n + 1)

i
=

s̈n i − n

i

Again multiplying by vn,

(Ia)n i =
än i − nvn

i

When P = n and Q = −1,

(Da)n i =
n − an i

i
and (Ds)n i =

n(1 + i)n − sn i

i

19



Arithmetically Increasing Annuities-due

Related formulas are available for annuities-due, most of which
simply replace i with d .

(IP,Q s̈)n i =Ps̈n i +
Q

d
(sn i − n)

(IP,Q ä)n i =Pän i +
Q

d
(an i − nvn)

(I s̈)n i =
sn+1 i − (n + 1)

d
=

s̈n i − n

d

(Dä)n i =
n − an i

d
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Examples

1 You purchase an 17-year annuity-immediate which pays 2000
at time 1, 2500 at time two, 3000 at time 3, increasing by 500
each time. What is the present value of this annuity
(i = 0.042)? [66,008.43]

2 You deposit 600 into an investment account earning an annual
effective rate of 6% at the end of each year for 20 years. The
interest earned is reinvested at the end of each year in a
different account earning 4%. What is the accumulated value
at the time of the last investment? [20,800.27]
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Arithmetically Increasing Perpetuities

Taking the limit of (IP,Qa)n i as n → ∞ we find,

(IP,Qa)∞ i =
P

i
+

Q

i2

and

(IP,Q ä)∞ i =
P

d
+

Q

id
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Annuity Values for Non-integral Terms

While so far we have dealt with integral terms, we know that

an i =
1− vn

i

We can actually define this for any positive real number r (along
with many other formulas)

ar i =
1− v r

i
and sr i =

(1 + i)r − 1

i

är i =
1− v r

d
and s̈r i =

(1 + i)r − 1

d
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