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Yield Curves

ν(t) is the current market price for a t-year zero-coupon bond.

The t-year spot rate of interest, yt , is the yield per year on a
t-year zero-coupon bond.

ν(t)(1 + yt)
t = 1 ∴ ν(t) =

1

(1 + yt)t

The term structure of the interest rates is the relationship
between t and yt .

It is often presented as a plot of yt against t, known as the
yield curve.
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Yield Curve Examples
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Forward Rates

Let f (t, t + k) be the forward rate of interest, the effective
annual rate of interest paid between time t and time t + k .

Forward rates use the following no-arbitrage argument.

[1 + f (t, t + k)]k =
(1 + yt+k)

t+k

(1 + yt)t
=

ν(t)

ν(t + k)
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Examples

y1 y2 y3 y4 y5
0.032 0.035 0.039 0.042 0.043

Using the information above, calculate ν(2), ν(5), and f (1, 2).
[0.9335, 0.8102, 0.038]

A two-year bond pays annual coupons of 30 and matures for 1,000.
Its price is 984. A one-year 1,000 zero-coupon bond sells for 975.
Compute the two year spot rate. [3.866%]
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Sensitivity Approximations

Given an interest rate i , the present value of a set of cash flows is

P(i) =
∑
t≥0

Ct(1 + i)−t

P ′(i) = −
∑
t≥0

Ctt(1 + i)−t−1

P ′′(i) =
∑
t≥0

Ctt(t + 1)(1 + i)−t−2

The second-order Taylor approximation is

P(i) ≈ P(i0) + P ′(i0)(i − i0) +
P ′′(i0)

2
(i − i0)

2
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Sensitivity Results

The tangent approximation may be rewritten as

P(i)− P(i0)

P(i0)
≈ P ′(i0)

P(i0)
(i − i0)

Using our regression background, for every 100 basis point increase
in the interest rate (e.g. from 0.05 to 0.06), the approximate

relative price change is P′(i0)
P(i0)

percent.
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Modified Duration

The modified duration is defined as

ModD = −P ′(i0)

P(i0)
=

∑
t≥0 Ctt(1 + i)−t−1∑
t≥0 Ct(1 + i)−t

The larger the modified duration, the more sensitive the price is to
interest rate changes.
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Macaulay Duration

Macaulay Duration is an adjustment of Modified Duration which is
easier to understand heuristically

MacD = ModD(1 + i) =
∑
t≥0

(
Ct(1 + i)−t

P(i)

)
t

This is the weighted average of payment times, where the weights
are the portion of the total price attributable to that cash flow.
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Examples

1 An n-year zero-coupon bond is purchased to yield i . Find the
Macaulay duration and the modified duration. [n, n/(1 + i)]

2 Find the Macaulay duration of a ten-year 8% 15,000 bond
with semiannual coupons and redemption amount 16,500
which yields 3% semiannually. [7.411]

3 Find the Macaulay duration of a 15-year mortgage for X at a
monthly nominal interest rate of 6%. [6.434]
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Examples

An n-year zero-coupon bond is purchased to yield i . Find the
Macaulay duration and the modified duration. [n, n/(1 + i)]
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Examples

Find the Macaulay duration of a ten-year 8% 15,000 bond with
semiannual coupons and redemption amount 16,500 which yields
3% semiannually. [7.411]
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Examples

Find the Macaulay duration of a 15-year mortgage for X at a
monthly nominal interest rate of 6%. [6.434]
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First-order Macaulay Approximation

Using the Macaulay duration, we can approximate the change in
the present value using the following formula

P(i) ≈ P(i0)

(
1 + i0
1 + i

)MacD
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Convexity

We saw previously that the second-order approximation did a
better job than the tangent line. We will define the modified
convexity to be:

ModC =
P ′′(i)

P(i)

The quadratic approximation can then be rewritten as:

P(i)− P(i0)

P(i0)
≈ P ′(i0)

P(i0)
(i − i0) +

P ′′(i0)

2P(i0)
(i − i0)

2

≈ −ModD(i − i0) +ModC
(i − i0)

2

2
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Example

A five-year zero-coupon bond redeemable at C is purchased to
provide an annual effective yield of 6%. Find the modified
convexity. Use that, along with the modified duration, to estimate
the relative price change if the interest rate goes up by 100 basis
points. [30/(1 + i)2, -0.04583]
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Asset-liability Matching Example

Note that for the next few slides we assume a flat yield curve.

You have to pay 1,000 in six months, 1,500 in 12 months, and
2,500 in 18 months. The bonds available for purchase are

1 Six-month zero-coupon bonds, sold to yield 6% nominal
interest convertible semiannually.

2 12-month 6% par-value bonds with semiannual coupons.

3 18-month 5% par-value bonds with semiannual coupons.

What face amount of each bond should you purchase to exactly
match your liabilities to your assets? [6: 897.11, 12: 1397.11, 18:
2439.02]
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Immunization Example

You have to pay your brother 10,000 in exactly 5 years. He loans
you 7,835.26 (to yield him 5%). You can currently buy 5%
zero-coupon bonds, but only for either 2, 3, or 7 years. How can
you be guaranteed to be able to pay him back?

If you put half (3,917.63) in each type of bond, sell the 7-year
bond in three years, and reinvest the entirety in a two-year
zero-coupon bond paying the prevailing interest rate, will you have
10,000 in five years if the prevailing interest rate is

5%

20%

1%
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Immunization

Define the surplus S(i) as the present value of the assets less the
present value of the liabilities.

S(i) =
∑
t≥0

(At − Lt)(1 + i)−t =
∑
t≥0

At(1 + i)−t −
∑
t≥0

Lt(1 + i)−t

If you can get the following three conditions to hold at your
current yield rate

S(i) = 0, S ′(i) = 0, S ′′(i) ≥ 0

then for a small change in i you will be no worse off. This is
Redington immunization.
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Full Immunization

While the Redington immunization prevents loss for small changes
in the interest rate, under full immunization no change in the
interest rate will cause a decrease in price. If the following are true:

δ0 is the current force of interest (i.e. no yield curve)

A single liability L is to be paid at time T

A pair of assets pay U and W at times T − u and T + w ,
respectively (0 < u < T and w > 0).

The net present value S(δ0) = 0 and the derivative
S ′(δ0) = 0.

Then S(δ) > 0 ∀ δ ̸= δ0.
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SOA #59

A liability consists of a series of 15 annual payments of 35,000 with
the first payment to be made one year from now.

The assets available to immunize this liability are five-year and
ten-year zero-coupon bonds.

The annual effective interest rate used to value the assets and the
liability is 6.2%. The liability has the same present value and
duration as the asset portfolio.

Calculate the amount invested in the five-year zero-coupon bonds.
[208,556.21]
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SOA #69

An insurance company must pay liabilities of 99 at the end of one
year, 102 at the end of two years and 100 at the end of three years.
The only investments available to the company are the following
three bonds. Bond A and Bond C are annual coupon bonds. Bond
B is a zero-coupon bond.

Maturity Yield-to-Maturity
Bond (in years) (Annualized) Coupon Rate

A 1 6% 7%
B 2 7% 0%
C 3 9% 5%

All three bonds have a par value of 100 and will be redeemed at
par. Calculate the number of units of Bond A that must be
purchased to match the liabilities exactly. [0.8807]
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SOA #71

Aakash has a liability of 6000 due in four years. This liability will
be met with payments of A in two years and B in six years. Aakash
is employing a full immunization strategy using an annual effective
interest rate of 5%.

Calculate A and B. [A: 2721.09, B: 3307.50]
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SOA #73

Trevor has assets at time 2 of A and at time 9 of B. He has a
liability of 95,000 at time 5. Trevor has achieved Redington
immunization in his portfolio using an annual effective interest rate
of 4%.

Calculate A and B. [A: 48,259.80, B: 47,629.96]
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SOA #72

Jia Wen has a liability of 12,000 due in eight years. This liability
will be met with payments of 5000 in five years and B in 8 + b
years. Jia Wen is employing a full immunization strategy using an
annual effective interest rate of 3%.

Calculate b and B. [b: 2.5076, B: 7039.26]
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