Stat 344 - Fall 2023

 Homework Assignment 1

 Homework Assignment 1
 Due: Tuesday, September 26th in class

1. Jimmy recently purchased a house for him and his family to live in with a $\$ 300,000$ 30 -year mortgage. He is worried that should he die before the mortgage is paid, his family will not be able to afford the mortgage payment. A friend of his suggests that he purchase a life insurance policy.
(a) What type of life insurance product, if any, should Jimmy purchase? (Your answer should be one or two sentences in length.)
(b) Before being issued the policy, Jimmy is required to go through an underwiting procedure. In your own words, briefly describe what is meant by the term underwriting and what it might entail for Jimmy and the insurance company. (Your answer should be two to four sentences in length.)
2. Consider a proposed survival function $S_{0}(t)=\frac{1}{10} \sqrt{100-t}, \quad 0 \leq t \leq 100$.
(a) Verify that this is indeed a valid survival function. (That is, verify that it meets the three necessary conditions discussed in class.)
(b) Find the probability that a newborn dies between the ages of 10 and 20. [0.054]
(c) Find the probability that a 30-year old lives to at least age 60. [0.756]
(d) Find the median lifetime length for a newborn. [75]
(e) Find an expression for the force of mortality, μ_{x}, simplifying as far as possible.
(f) Sketch the force of mortality μ_{x} for $x \in[0,100]$.
(g) Find the mean of the random variable T_{30}. [46.67]
(h) Find the variance of the random variable T_{30}. [435.55]
(i) Calculate $\stackrel{\circ}{e}_{30: \overline{20}}$. [18.49]
(j) Find the median future lifetime of a person age 30. (Is your answer consistent with your answer to part (c)?) [52.5]
3. Assume that the force of mortality for a survival model is given by $\mu_{x}=\frac{1}{110-x}$.
(a) Find the survival function $S_{0}(t)$ corresponding to this force of mortality, simplifying as far as possible.
(b) What is the limiting age ω for this model? [110]
(c) Sketch the survival function $S_{0}(t)$.
(d) Find the density function $f_{0}(t)$.
(e) Calculate the probability of a newborn dying between the ages of 40 and 60 . [20/110]
(f) Calculate the probability of a 20-year-old dying between the ages of 40 and 60 . [20/90]
(g) Do you think this survival model is suitable as a model for human mortality? Why or why not? (Your answer should be one or two sentences in length.)
4. You are given the following information:

$$
{ }_{3} p_{51}=0.9126, \quad{ }_{2} q_{50}=0.0298, \quad q_{52}=0.0300, \quad{ }_{2} p_{52}=0.9312, \quad q_{54}=1
$$

(a) Find the numerical values of the following quantities (and also make sure you understand the interpretation of each):
i. $p_{52}[0.97]$
ii. ${ }_{4} p_{50}[0.9035]$
iii. $p_{51}[0.98]$
iv. ${ }_{2}{ }_{2} q_{50}[0.0667]$
v. ${ }_{3} \mid q_{50}[0.0376]$
vi. ${ }_{2} p_{53}[0]$
vii. e_{50} [3.8047]
(b) For the random variable K_{51}, find its:
i. pmf (probability mass function)
ii. mean [2.8432]
iii. standard deviation [0.5577]
iv. mode [3]
v. Calculate the probability that K_{51} has an odd value. [0.942]
5. (Extra Credit) Show that $\frac{d}{d x}{ }_{t} p_{x}={ }_{t} p_{x}\left(\mu_{x}-\mu_{x+t}\right)$.

