Stat 344 - Fall 2023 Homework Assignment 5
 Due Date: Tuesday, December 5th in class

1. You are using the Equivalence Principle to price a $\$ 100,00020$ year term policy issued to (50). You are given the following:

$$
A_{50: \overline{20}}=0.4 \quad v=0.95 \quad{ }_{20} p_{50}=0.9
$$

(a) Assuming that the premiums are paid annually and the death benefit is paid at the end of the year of death, calculate the annual premium. [644.69]
(b) Assuming that the premiums are paid monthly and the death benefit is paid at the moment of death, calculate the monthly premium. Use the UDD assumption where necessary. [56.58]
2. A person age (85) purchases a three year term policy, with gross premiums payable annually in advance and the death benefit payable at the end of the year of death. The death benefit is $\$ 100,000$ plus the sum of the gross premiums paid. You are given:

$$
q_{85}=0.2 \quad q_{86}=0.3 \quad q_{87}=0.4 \quad i=10 \%
$$

Expenses consist of:

- 30% of the initial gross premium and 2% of renewal gross premiums
- $\$ 500$ at issue

Using the equivalence principle, calculate the gross annual premium for this policy. [70703]
3. A 30 -year old purchases a 3 -year endowment insurance, with $\$ 200,000$ death benefit payable at the end of the year of death, and premium P payable at the beginning of each year while the contract is in force. You are given

$$
p_{30}=0.98, \quad p_{31}=0.97, \quad p_{32}=0.95, \quad i=10 \%
$$

(a) Write an expression for L_{0}^{n}.
(b) Calculate the variance of L_{0}^{n}, in terms of P. Simplify as much as possible.
(c) Calculate the annual premium P, assuming it has been determined using the equivalence principle. [56,541.83]
4. Let L_{0}^{n} denote the present-value-of-loss random variable for a fully continuous whole life insurance policy issued to (x). Premiums are paid at a continuous rate of 0.09 per year and a benefit of amount 2 is paid at the moment of death. If $\delta=0.06$ and $\mu_{x+t}=0.04$ for all t, find $\operatorname{Var}\left(L_{0}^{n}\right)$. [1.1025]
5. An insurer issues 100 fully discrete whole life policies to independent persons age (x). Assume that

$$
d=0.06 \quad A_{x}=0.4 \quad{ }^{2} A_{x}=0.2
$$

The policies are distributed as follows:

Face Amount	Number of Policies	Annual Premium Per Policy
100,000	80	5,000
400,000	20	19,000

Using a normal approximation, find the approximate probability that the present value of the insurer's profits exceeds $4,000,000$. [0.00015]
6. An insurance company wants to use the Portfolio Percentile Premium Principle in order to set the annual premium amount P for whole life policies issued to x year olds. Assume that there are N insureds, all independent of one another. The death benefit for each policy will be $\$ 500,000$, payable at the end of the year of death. Assume that the insurer sets $\alpha=0.95$ in its calculations. You are given that:

$$
i=6 \% \quad A_{x}=0.3051431 \quad{ }^{2} A_{x}=0.1306687
$$

(a) Find the premium P if $N=100$. [14387.17]
(b) Find the premium P if $N=2500$. [12805.84]
(c) Find the premium P if $N=10000$. [12616.37]
(d) Find the premium under the Equivalence Principle. [12427.81]

