Stat 344 Homework Assignment 5 Solutions

1. You are using the Equivalence Principle to price a $\$ 100,00020$ year term policy issued to (50). You are given the following:

$$
A_{50: \overline{20}}=0.4 \quad v=0.95 \quad{ }_{20} p_{50}=0.9
$$

(a) Assuming that the premiums are paid annually and the death benefit is paid at the end of the year of death, calculate the annual premium. [644.69]
(b) Assuming that the premiums are paid monthly and the death benefit is paid at the moment of death, calculate the monthly premium. Use the UDD assumption where necessary. [56.58]

Answer:

(a) First calculate

$$
A_{50: 20 \mid}^{1}=A_{50: 20 \mid}-A_{50: 20 \mid} \frac{1}{20}=0.4-(0.95)^{20} \times 0.9=0.077
$$

and

$$
\begin{gathered}
\ddot{a}_{50: 20 \mid}=\frac{1-A_{50: 20}}{d}=\frac{0.6}{0.05}=12 \\
P=\frac{100,000 A_{50: 20}^{1}}{\ddot{a}_{50: 20}}=\frac{100,000(0.077)}{12}=644.69
\end{gathered}
$$

(b)

$$
P=\frac{100,000 \bar{A}_{50: 20}^{1}}{\ddot{a}_{50: 20}^{(12)}} \stackrel{U D D}{=} \frac{100,000(0.077) \frac{i}{\delta}}{12 \alpha(12)-\beta(12)\left(1-(0.95)^{20} \times 0.9\right)}=56.58
$$

2. A person age (85) purchases a three year term policy, with gross premiums payable annually in advance and the death benefit payable at the end of the year of death. The death benefit is $\$ 100,000$ plus the sum of the gross premiums paid. You are given:

$$
q_{85}=0.2 \quad q_{86}=0.3 \quad q_{87}=0.4 \quad i=10 \%
$$

Expenses consist of:

- 30% of the initial gross premium and 2% of renewal gross premiums
- $\$ 500$ at issue

Using the equivalence principle, calculate the gross annual premium for this policy. [70703]
Answer:
EPV of the benefits are:

$$
\begin{aligned}
& \frac{(100,000+P)(0.2)}{1.1}+\frac{(100,000+2 P)(0.8)(0.3)}{(1.1)^{2}}+\frac{(100,000+3 P)(0.8)(0.7)(0.4)}{(1.1)^{3}} \\
& =54845.98+1.0834 P
\end{aligned}
$$

EPV of the expenses are

$$
500+0.28 P+0.02 P\left(1+0.8 / 1.1+(0.8)(0.7) /(1.1)^{2}\right)=500+0.3238 P
$$

EPV of the premiums are

$$
P\left(1+0.8 / 1.1+(0.8)(0.7) /(1.1)^{2}\right)=2.19 P
$$

Then the equation of value is

$$
\begin{aligned}
54845.98+1.0834 P+500+0.3238 P & =2.19 P \\
0.7828 P & =55345.98 \\
P & =70703
\end{aligned}
$$

3. A 30-year old purchases a 3 -year endowment insurance, with $\$ 200,000$ death benefit payable at the end of the year of death, and premium P payable at the beginning of each year while the contract is in force. You are given

$$
p_{30}=0.98, \quad p_{31}=0.97, \quad p_{32}=0.95, \quad i=10 \%
$$

(a) Write an expression for L_{0}^{n}.

Answer: $L_{0}^{n}=200,000 v^{\min \left(K_{30}+1,3\right)}-P \ddot{a}_{\overline{\min \left(K_{30}+1,3\right)}}$
(b) Calculate the mean of L_{0}^{n}, in terms of P. Simplify as much as possible.

Answer: First we can calculate

$$
\begin{aligned}
A_{30: 31}= & \left(v q_{30}+v^{2} p_{30} q_{31}+v^{3} p_{30} p_{31} q_{32}\right)+\left(v^{3} p_{30} p_{31} p_{32}\right) \\
= & \left((0.9091)(0.02)+(0.9091)^{2}(0.98)(0.03)+(0.9091)^{3}(0.98)(0.97)(0.05)\right) \\
& \quad+\left((0.9091)^{3}(0.98)(0.97)(0.95)\right) \\
= & (0.07819)+(0.67849) \\
= & 0.75668
\end{aligned}
$$

Then we have

$$
\begin{aligned}
E\left[L_{0}^{n}\right] & =E\left[200,000 v^{\min \left(K_{30}+1,3\right)}-P \ddot{a}_{\left.\overline{\min \left(K_{30}+1,3\right)}\right]}\right] \\
& =200,000 A_{30: 31}-P \ddot{a}_{30: 31} \\
& =200,000(0.75668)-P\left(\frac{1-0.75668}{0.0909}\right) \\
& =151,335.84-2.67653 P
\end{aligned}
$$

(c) Calculate the variance of L_{0}^{n}, in terms of P. Simplify as much as possible.

Answer: First we can calculate

$$
\begin{aligned}
{ }^{2} A_{30: 31}= & \left(v^{2} q_{30}+\left(v^{2}\right)^{2} p_{30} q_{31}+\left(v^{3}\right)^{2} p_{30} p_{31} q_{32}\right)+\left(\left(v^{3}\right)^{2} p_{30} p_{31} p_{32}\right) \\
= & \left((0.9091)^{2}(0.02)+(0.9091)^{4}(0.98)(0.03)+(0.9091)^{6}(0.98)(0.97)(0.05)\right) \\
& \quad+\left((0.9091)^{6}(0.98)(0.97)(0.95)\right) \\
& =(0.06344)+(0.50976) \\
= & 0.57320
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\operatorname{Var}\left(L_{0}^{n}\right) & =\operatorname{Var}\left(200,000 v^{\min \left(K_{30}+1,3\right)}-P \ddot{a} \overline{\min \left(K_{30}+1,3\right)}\right) \\
& =\operatorname{Var}\left(200,000 v^{\min \left(K_{30}+1,3\right)}-P\left(\frac{1-v^{\min \left(K_{30}+1,3\right)}}{0.0909}\right)\right) \\
& =\operatorname{Var}\left(200,000 v^{\min \left(K_{30}+1,3\right)}-\frac{P}{0.0909}+\frac{P}{0.0909} v^{\min \left(K_{30}+1,3\right)}\right) \\
& =\operatorname{Var}\left(\left(200,000+\frac{P}{0.0909}\right) v^{\min \left(K_{30}+1,3\right)}-\frac{P}{0.0909}\right) \\
& =\operatorname{Var}\left(\left(200,000+\frac{P}{0.0909}\right) v^{\min \left(K_{30}+1,3\right)}\right) \\
& =\left(200,000+\frac{P}{0.0909}\right)^{2} \operatorname{Var}\left(v^{\min \left(K_{30}+1,3\right)}\right) \\
& =\left(200,000+\frac{P}{0.0909}\right)^{2}\left({ }^{2} A_{30: 31}-\left(A_{30: 3}\right)^{2}\right) \\
& =\left(200,000+\frac{P}{0.0909}\right)^{2}(0.57320-0.57256) \\
& =\left(200,000+\frac{P}{0.0909}\right)^{2}(0.000637)
\end{aligned}
$$

(d) Calculate the annual premium P, assuming it has been determined using the equivalence principle. [56,541.83]

Answer:

We can set $E\left[L_{0}^{n}\right]$ from above equal to 0 and solve for P :
$0=151,335.84-2.67653 P$ so that $P=151,335.84 / 2.67653=56,541.83$.
4. Let L_{0}^{n} denote the present-value-of-loss random variable for a fully continuous whole life insurance policy issued to (x). Premiums are paid at a continuous rate of 0.09 per year and a benefit of amount 2 is paid at the moment of death. If $\delta=0.06$ and $\mu_{x+t}=0.04$ for all t, find $\operatorname{Var}\left(L_{0}^{n}\right)$. [1.1025]

Answer:

$$
\begin{aligned}
L_{0}^{n} & =2 v^{T_{x}}-0.09\left(\frac{1-v^{T_{x}}}{0.06}\right) \\
& =3.5 v^{T_{x}}-1.5
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{Var}\left(L_{0}^{n}\right) & =3.5^{2} \operatorname{Var}\left(v^{T_{x}}\right) \\
& =(12.25)\left({ }^{2} \bar{A}_{x}-\bar{A}_{x}^{2}\right) \\
& =(12.25)\left[\frac{0.04}{0.16}-\left(\frac{0.04}{0.1}\right)^{2}\right] \\
& =1.1025
\end{aligned}
$$

5. An insurer issues 100 fully discrete whole life policies to independent persons age (x). Assume that

$$
d=0.06 \quad A_{x}=0.4 \quad{ }^{2} A_{x}=0.2
$$

The policies are distributed as follows:

Face Amount	Number of Policies	Annual Premium Per Policy
100,000	80	5,000
400,000	20	19,000

Using a normal approximation, find the approximate probability that the present value of the insurer's profits exceeds $4,000,000$. [0.00015]

Answer:

For each of the smaller policies,

$$
\begin{aligned}
L_{0}^{s} & =100,000 v^{K_{x}+1}-5,000\left(\frac{1-v^{K_{x}+1}}{d}\right) \\
& =183,333 v^{K_{x}+1}-83,333
\end{aligned}
$$

Then

$$
E\left[L_{0}^{s}\right]=183,333 A_{x}-83,333=-10,000
$$

and

$$
\operatorname{Var}\left[L_{0}^{s}\right]=(183,333)^{2}\left({ }^{2} A_{x}-A_{x}^{2}\right)=1,344,439,556 .
$$

Similarly, for each of the larger policies,

$$
\begin{aligned}
L_{0}^{\ell} & =400,000 v^{K_{x}+1}-19,000\left(\frac{1-v^{K_{x}+1}}{d}\right) \\
& =716,667 v^{K_{x}+1}-316,667
\end{aligned}
$$

Then

$$
E\left[L_{0}^{\ell}\right]=716,667 A_{x}-316,667=-30,000
$$

and

$$
\operatorname{Var}\left[L_{0}^{\ell}\right]=(716,667)^{2}\left({ }^{2} A_{x}-A_{x}^{2}\right)=20,544,463,556 .
$$

Thus, for the total block of policies,

$$
E\left[L_{0}^{a g g}\right]=80(-10,000)+20(-30,000)=-1,400,000
$$

and

$$
\operatorname{Var}\left[L_{0}^{a g g}\right]=80(1,344,439,556)+20(20,544,463,556)=518,444,435,600
$$

so that $S D\left(L_{0}^{a g g}\right)=720,031$. Then

$$
P(L<-4000000)=P\left(Z>-\frac{2,600,000}{720,031}\right)=0.00015
$$

6. An insurance company wants to use the Portfolio Percentile Premium Principle in order to set the annual premium amount P for whole life policies issued to x year olds. Assume that there are N insureds, all independent of one another. The death benefit for each policy will be $\$ 500,000$, payable at the end of the year of death. Assume that the insurer sets $\alpha=0.95$ in its calculations. You are given that:

$$
i=6 \% \quad A_{x}=0.3051431 \quad{ }^{2} A_{x}=0.1306687
$$

(a) Find the premium P if $N=100$. [14387.17]
(b) Find the premium P if $N=2500$. [12805.84]
(c) Find the premium P if $N=10000$. [12616.37]
(d) Find the premium under the Equivalence Principle. [12427.81]

Answer: We want to find the premium such that $P[L<0]$ where L is the total future loss random variable. First we find the mean and variance of future loss for a single policy:

$$
\begin{aligned}
L_{0, i} & =500,000 v^{K_{x}+1}-P \ddot{a} \frac{K_{x}+1}{} \\
& =500,000 v^{K_{x}+1}-P\left(\frac{1-v^{K_{x}+1}}{0.0566}\right) \\
& =500,000 v^{K_{x}+1}-\frac{P}{0.0566}+P \frac{v^{K_{x}+1}}{0.0566} \\
& =v^{K_{x}+1}(500,000+17.667 P)-17.667 P \\
E\left[L_{0, i}\right] & =E\left[v^{K_{x}+1}(500,000+17.667 P)-17.667 P\right] \\
& =A_{x}(500,000+17.667 P)-17.667 P \\
\operatorname{Var}\left[L_{0, i}\right] & =\operatorname{Var}\left[v^{K_{x}+1}(500,000+17.667 P)-17.667 P\right] \\
& =\operatorname{Var}\left[v^{K_{x}+1}(500,000+17.667 P)\right] \\
& =(500,000+17.667 P)^{2} \operatorname{Var}\left[v^{K_{x}+1}\right] \\
& =(500,000+17.667 P)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
\end{aligned}
$$

Then, for L, we have

$$
E[L]=N \cdot\left(A_{x}(500,000+17.667 P)-17.667 P\right)
$$

and

$$
\operatorname{Var}(L)=N \cdot(500,000+17.667 P)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
$$

Substituting the values given yields:

$$
E[L]=N \cdot((0.3051431)(500,000+17.667 P)-17.667 P)
$$

and

$$
\operatorname{Var}(L)=N \cdot(500,000+17.667 P)^{2}\left[0.1306687-(0.3051431)^{2}\right]
$$

We want to set $P[L<0]=0.95$. This implies that we should set $\frac{-E[L]}{\sqrt{\operatorname{Var}(L)}}=$
1.645:

$$
\begin{aligned}
\frac{-E[L]}{\sqrt{\operatorname{Var}(L)}} & =1.645 \\
\frac{-N \cdot((0.3051431)(500,000+17.667 P)-17.667 P)}{\sqrt{N \cdot(500,000+17.667 P)^{2}\left[0.1306687-(0.3051431)^{2}\right]}} & =1.645 \\
\frac{N \cdot(12.2758 P-152,571.55)}{\sqrt{N} \cdot(500,000+17.667 P)[0.193795]} & =1.645 \\
\frac{\sqrt{N} \cdot(12.2758 P-152,571.55)}{(96,897.353+3.423706 P)} & =1.645 \\
\sqrt{N} \cdot(12.2758 P-152,571.55) & =159,396.1466+5.631997 P
\end{aligned}
$$

Now, if we plug in $N=100$ into (1), we can solve to get $\mathrm{P}=14,387.17$
If we plug in $N=2500$ into (1), we can solve to get $\mathrm{P}=12,805.84$
If we plug in $N=10000$ into (1), we can solve to get $\mathrm{P}=12,616.37$

