Stat 344 - Fall 2023
 Homework Assignment 6
 Due Date: Thursday, December 14th in class

1. A person age x purchases a fully discrete 3 -year term insurance. The death benefit for the policy is $\$ 100,000$ plus the sum of all premiums paid. Use the following basis for all calculations:

$$
q_{x}=0.1, \quad q_{x+1}=0.2, \quad q_{x+2}=0.3, \quad i=10 \%
$$

(a) Calculate the net annual premium. [26135.78]
(b) Write a prospective formula for ${ }_{1} V^{n}$ in terms of insurance and annuity symbols. Use this equation to calculate ${ }_{1} V^{n}$. [17928.7]
(c) Write an equation for ${ }_{2} V^{n}$ in terms of ${ }_{1} V^{n}$. Use this equation to solve for ${ }_{2} V^{n}$.
(d) Write an equation for ${ }_{2} V^{n}$ in terms of ${ }_{3} V^{n}$. Use this equation to solve for ${ }_{2} V^{n}$.
2. A single premium continuous whole life annuity is issued to (65). The annuity pays at a rate of $\$ 5,000$ per year. The premium and policy value bases are:

- Mortality is modeled as a constant force of mortality, $\mu=0.07$.
- Interest is given by $\delta=0.03$.
- The only expenses are an amount of $\$ 1,000$ incurred at policy issue and amount of $\$ 500$ incurred at the policy termination.
(a) Calculate the gross single premium for this policy. [51,350]
(b) Calculate the gross premium policy value at time 5 for this policy. [50,350]

3. A fully discrete whole life policy is issued to (45) whose death benefit is $\$ 100,000$ until the insured reaches age 65, and $\$ 50,000$ thereafter. Premiums are level and paid anually. Use the following basis for all calculations:

- Mortality follows the SULT.
- $i=5 \%$
- Expenses are:
- 5% of all gross premiums
- \$1,000 at the start of year $1 ; \$ 100$ at the start of each subsequent year the policy is in force
(a) Calculate the net and gross premiums for this policy. [492.60, 676.96]
(b) Calculate ${ }_{10} V^{n}$ and ${ }_{10} V^{g}$ using prospective formulas. [5086.51, 4275.30]
(c) Calculate ${ }_{11} V^{n}$ and ${ }_{11} V^{g}$ using recursion formulas. [5670.07, 4869.74]

4. A single premium whole life annuity-due is issued to (65) that pays a monthly benefit of $\$ 1,000$. The first 10 years of payments are guaranteed. The only expenses are $\$ 700$ at issue and $\$ 45$ per year in renewal years. (Assume that the renewal expenses are incurred only while the policyholder is alive.) Assume that mortality is given by the SULT; use the UDD fractional age assumption where necessary. Also assume an annual effective interest rate of 5%.
(a) Calculate the net single premium for this policy. [160,546.62]
(b) Calculate the gross single premium for this policy. [161,811.40]
(c) Calculate ${ }_{8} V^{n},{ }_{8} V^{g}$, and ${ }_{8} V^{e}$ for this policy, assuming the insured is alive at that time. [126,850.76; 127,346.10; 495.36]
(d) Calculate ${ }_{12} V^{n}$ for this policy. [109,798.95]
(e) Calculate ${ }_{0.05} p_{76.95}$ for this person. [0.998946]
(f) Calculate ${ }_{11.95} V^{n}$ for this policy. [109,415.96]
5. Jill purchases a $\$ 250,000$ fully discrete 20 -year term life insurance policy at age 35 . Mortality is given by the SULT. Assume an annual effective interest rate of 5%. Expenses are as follows:

- Issue expenses of $\$ 1,000$.
- Maintenance expenses of $\$ 50$ per year in renewal years.
- Premium taxes of 2% of all gross premiums.
- Claims expenses of $\$ 100$ at the end of the year of death.
(a) Calculate ${ }_{5} V^{n},{ }_{5} V^{g}$, and ${ }_{5} V^{e}$ for this policy. [444.02, -347.06, -791.08]
(b) Calculate the FPT modified premiums for this policy. [93.10, 187.63]
(c) Calculate ${ }_{5} V^{F P T}$ for this policy. [366.02]

6. Time to death from the onset of a disease in a study of 10 lives finds the following sample:
$1,2,4,4,5,6,6,7,10,15$
(a) Find $S(5.5)$
i. Using Kaplan-Meier [.5]
ii. Using Nelson-Åalen [.534]

Now assume that 6 other people left the study for causes other than death at times:
$3,3,4,6,8,10$.
(b) Find $S(5.5)$
i. Using Kaplan-Meier [.6482]
ii. Using Nelson-Åalen [.6657]
(c) Calculate the variance of the two estimates in (b). [KM $=0.0166$, $\mathrm{NA}=0.0135]$
(d) Calculate the 95% linear confidence interval of the NA survival estimate in (b). [(0.4383, 0.8930)]
(e) Calculate the 95% log-confidence interval for the KM survival estimate in (b). [(0.3449, 0.8381)]

