Stat 344 - Fall 2023

Homework Assignment 5

Due Date: Thursday, December 14th in class

1. A person age x purchases a fully discrete 3 -year term insurance. The death benefit for the policy is $\$ 100,000$ plus the sum of all premiums paid. Use the following basis for all calculations:

$$
q_{x}=0.1, \quad q_{x+1}=0.2, \quad q_{x+2}=0.3, \quad i=10 \%
$$

(a) Calculate the net annual premium. [26135.78] Answer:

$$
\begin{aligned}
P\left(1+\frac{0.9}{1.1}+\frac{(0.9)(0.8)}{(1.1)^{2}}\right) & =\frac{(100000+P)(0.1)}{1.1} \\
& +\frac{(100000+2 P)(0.9)(0.2)}{(1.1)^{2}}+\frac{(100000+3 P)(0.9)(0.8)(0.3)}{(1.1)^{3}} \\
1.537943 P & =40195.34 \\
P & =26135.78
\end{aligned}
$$

(b) Write a prospective formula for ${ }_{1} V^{n}$ in terms of insurance and annuity symbols. Use this equation to calculate ${ }_{1} V^{n}$. [17928.7] Answer:

$$
\begin{aligned}
{ }_{1} V^{n} & =\frac{(100000+2 P)(0.2)}{(1.1)}+\frac{(100000+3 P)(0.8)(0.3)}{(1.1)^{2}}-26135.78(1+0.8 / 1.1) \\
& =17928.7
\end{aligned}
$$

To check the answer, we can calculate it recursively:

$$
\begin{aligned}
(26135.78)(1.1) & =0.1(126135.78)+0.9_{1} V^{n} \\
{ }_{1} V^{n} & =((26135.78)(1.1)-12613.58) / 0.9 \\
{ }_{1} V^{n} & =17928.64 .
\end{aligned}
$$

(c) Write an equation for ${ }_{2} V^{n}$ in terms of ${ }_{1} V^{n}$. Use this equation to solve for ${ }_{2} V^{n}$. Answer:

$$
\begin{aligned}
\left({ }_{1} V^{n}+26135.78\right)(1.1) & =(0.2)(100000+2(26135.78))+(0.8)_{2} V^{n} \\
{ }_{2} V^{n} & =((17928.64+26135.78)(1.1)-(0.2)(100000+2(26135.78))) /(0.8) \\
{ }_{2} V^{n} & =22520.69
\end{aligned}
$$

(d) Write an equation for ${ }_{2} V^{n}$ in terms of ${ }_{3} V^{n}$. Use this equation to solve for ${ }_{2} V^{n}$. Answer:

$$
\begin{aligned}
\left({ }_{2} V^{n}+26135.78\right)(1.1) & =(0.3)(100000+3(26135.78))+(0.7){ }_{3} V^{n} \\
\left({ }_{2} V^{n}+26135.78\right)(1.1) & =(0.3)(100000+3(26135.78))+0 \\
{ }_{2} V^{n} & =((0.3)(100000+3(26135.78))) /(1.1)-26135.78 \\
{ }_{2} V^{n} & =22520.77
\end{aligned}
$$

2. A single premium continuous whole life annuity is issued to (65). The annuity pays at a rate of $\$ 5,000$ per year. The premium and policy value bases are:

- Mortality is modeled as a constant force of mortality, $\mu=0.07$.
- Interest is given by $\delta=0.03$.
- The only expenses are an amount of $\$ 1,000$ incurred at policy issue and amount of $\$ 500$ incurred at the policy termination.
(a) Calculate the gross single premium for this policy. [51,350]
(b) Calculate the gross premium policy value at time 5 for this policy. [50,350]

Answer: The gross premium is given by

$$
\begin{gathered}
G=50000+1000+500\left(\frac{0.07}{0.1}\right)=51,350 . \\
\\
{ }_{5} V^{g}=5000 \bar{a}_{70}+500 \bar{A}_{70} \\
\quad=50,350
\end{gathered}
$$

3. A fully discrete whole life policy is issued to (45) whose death benefit is $\$ 100,000$ until the insured reaches age 65, and $\$ 50,000$ thereafter. Premiums are level and paid anually. Use the following basis for all calculations:

- Mortality follows the SULT.
- $i=5 \%$
- Expenses are:
- 5% of all gross premiums
- \$1,000 at the start of year $1 ; \$ 100$ at the start of each subsequent year the policy is in force
(a) Calculate the net and gross premiums for this policy. [492.60, 676.96] Answer:

$$
\begin{aligned}
P \ddot{a}_{45} & =50000 A_{45}+50000 A_{45: 20 \mid}^{1} \\
P \ddot{a}_{45} & =50000 A_{45}+50000\left(A_{45}-{ }_{20} E_{45} A_{65}\right) \\
17.8162 P & =50000(0.15161)+50000(0.15161-(0.35994)(0.35477)) \\
P & =492.60 \\
G \ddot{a}_{45} & =50000 A_{45}+50000 A_{45: 20 \mid}^{1}+0.05 G \ddot{a}_{45}+900+100 \ddot{a}_{45} \\
0.95 G \ddot{a}_{45} & =50000 A_{45}+50000 A_{45: 20 \mid}^{1}+900+100 \ddot{a}_{45} \\
16.92539 G & =8776.20+900+1781.62 \\
G & =676.96
\end{aligned}
$$

(b) Calculate ${ }_{10} V^{n}$ and ${ }_{10} V^{g}$ using prospective formulas. [5086.51, 4275.30] Answer:

$$
\begin{aligned}
& { }_{10} V^{n}=50000 A_{55}+50000 A_{55: 101}^{1}-P \ddot{a}_{55} \\
& { }_{10} V^{n}=50000(0.23524)+50000(0.23524-0.59342(0.35477))-(492.60)(16.0599) \\
& { }_{10} V^{n}=5086.51
\end{aligned}
$$

$$
\begin{aligned}
& { }_{10} V^{g}=50000 A_{55}+50000 A_{55: 10}^{1}+0.05 G \ddot{a}_{55}+100 \ddot{a}_{55}-G \ddot{a}_{55} \\
& { }_{10} V^{g}=12997.62+100 \ddot{a}_{55}-0.95 G \ddot{a}_{55} \\
& { }_{10} V^{g}=4275.30
\end{aligned}
$$

(c) Calculate ${ }_{11} V^{n}$ and ${ }_{11} V^{g}$ using recursion formulas. [5670.07, 4869.74] Answer:

$$
\begin{aligned}
\left({ }_{10} V^{n}+P\right)(1+i) & =q_{55}(100000)+p_{5511} V^{n} \\
(5086.51+492.60)(1.05) & =199.3+(1-0.001993)_{11} V^{n} \\
11 V^{n} & =5670.07 \\
\left({ }_{10} V^{g}+G-0.05 G-100\right)(1+i) & =q_{55}(100000)+p_{5511} V^{g} \\
(4275.30+0.95(676.96)-100)(1.05) & =199.3+(1-0.001993)_{11} V^{g} \\
{ }_{11} V^{g} & =4869.74
\end{aligned}
$$

4. A single premium whole life annuity-due is issued to (65) that pays a monthly benefit of $\$ 1,000$. The first 10 years of payments are guaranteed. The only expenses are $\$ 700$ at issue and $\$ 45$ per year in renewal years. (Assume that the renewal expenses are incurred only while the policyholder is alive.) Assume that mortality is given by the SULT; use the UDD fractional age assumption where necessary. Also assume an annual effective interest rate of 5%.
(a) Calculate the net single premium for this policy. [160,546.62]
(b) Calculate the gross single premium for this policy. [161,811.40]
(c) Calculate ${ }_{8} V^{n},{ }_{8} V^{g}$, and ${ }_{8} V^{e}$ for this policy, assuming the insured is alive at that time. [126,850.76; 127,346.10; 495.36]
(d) Calculate ${ }_{12} V^{n}$ for this policy. [109,798.95]
(e) Calculate ${ }_{0.05} p_{76.95}$ for this person. [0.998946]
(f) Calculate ${ }_{11.95} V^{n}$ for this policy. [109,415.96]

Answer:

(a)

$$
\begin{aligned}
& P=12,000\left[\ddot{a} \frac{(12)}{10}+{ }_{10} E_{65} \ddot{a}_{75}^{(12)}\right] \\
& P=12,000\left[\ddot{a} \frac{(12)}{10}+{ }_{10} E_{65}\left(\alpha(12) \ddot{a}_{75}-\beta(12)\right)\right] \\
& P=12,000[(7.929488)+(0.55305)((1.0002)(10.3178)-(0.46651))] \\
& P=160,546.62
\end{aligned}
$$

(b)

$$
\begin{aligned}
& G=12,000\left[\ddot{a} \frac{(12)}{10}+{ }_{10} E_{65} \ddot{a}_{75}^{(12)}\right]+655+45 \ddot{a}_{65} \\
& G=P+655+45 \ddot{a}_{65} \\
& G=160,546.62+655+45(13.5498) \\
& G=161,811.40
\end{aligned}
$$

(c) Prospectively compute the net and gross premium reserve, then the expense reserve is the difference:

$$
\begin{aligned}
{ }_{8} V^{n} & =12,000\left(\ddot{a}_{\overline{2}}^{(12)}+{ }_{2} E_{73} \ddot{a}_{75}^{(12)}\right) \\
& =12,000\left(1.909438+\left(\frac{1}{(1.05)^{2}} \cdot \frac{85,203.5}{87,916.8}\right)((1.0002)(10.3178)-(0.46651))\right) \\
& =126,850.76
\end{aligned}
$$

$$
\begin{aligned}
{ }_{8} V^{g} & ={ }_{8} V^{n}+45 \ddot{a}_{73} \\
& =126,850.76+45(11.0081) \\
& =127,346.10
\end{aligned}
$$

$$
{ }_{8} V^{e}=495.36
$$

(d)

$$
\begin{aligned}
& { }_{12} V^{n}=12,000 \ddot{a}_{77}^{(12)} \\
& { }_{12} V^{n}=12,000\left(\alpha(12) \ddot{a}_{77}-\beta(12)\right) \\
& { }_{12} V^{n}=12,000((1.0002)(9.6145)-(0.46651)) \\
& { }_{12} V^{n}=109,798.95
\end{aligned}
$$

(e)

$$
\begin{aligned}
& p_{76}={ }_{0.95} p_{76} \cdot{ }_{0.05} p_{76.95} \\
& 0.979332 \stackrel{U D D}{=}\left(1-(0.95) \cdot q_{76}\right) \cdot{ }_{0.05} p_{76.95} \\
& 0.979332 \stackrel{U D D}{=}(1-(0.95)(0.020668)) \cdot{ }_{0.05} p_{76.95} \\
& 0.05 p_{76.95} \stackrel{U D D}{=} 0.998946
\end{aligned}
$$

(f)

$$
\begin{aligned}
{ }_{11.95} V^{n} & =v^{0.05}{ }_{0.05} p_{76.95}{ }_{12} V^{n} \\
{ }_{11.95} V^{n} & =\frac{0.998946}{(1.05)^{0.05}} \cdot(109,798.95) \\
{ }_{11.95} V^{n} & =109,415.96
\end{aligned}
$$

Answer:
(a) First we calculate

$$
\begin{aligned}
& \bar{A}_{40}=\int_{0}^{60} e^{-\delta t} \frac{1}{60} d t \\
& \bar{A}_{40}=\frac{1}{60} \int_{0}^{60} e^{-0.04879 t} d t \\
& \bar{A}_{40}=\frac{1}{60}\left[-e^{-0.04879 t} / 0.04879\right]_{0}^{60} \\
& \bar{A}_{40}=0.3233121
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{a}_{40} & =\int_{0}^{60}{ }_{t} p_{40} e^{-\delta t} d t \\
\bar{a}_{40} & =\int_{0}^{60}(1-t / 60) e^{-\delta t} d t \\
\bar{a}_{40} & =\int_{0}^{60} e^{-\delta t}-t e^{-\delta t} / 60 d t \\
& =\left.((-13.4946+0.3416 t))\left(e^{-0.04879 t}\right)\right|_{0} ^{60} \\
& =13.86943
\end{aligned}
$$

so that

$$
\begin{aligned}
P \bar{a}_{40} & =100,000 \bar{A}_{40} \\
P & =\frac{100,000 \bar{A}_{40}}{\bar{a}_{40}} \\
P & =\frac{100,000(0.3233121)}{13.86943} \\
P & =2331.11
\end{aligned}
$$

(b) Prospectively,

$$
\begin{aligned}
& 15.7 V=100,000 \bar{A}_{55.7}-P \bar{a}_{55.7} \\
& 15.7 V=40,938-2,331.11(12.10532) \\
& 15.7 V=12,719.17
\end{aligned}
$$

(c) For this mortality model

$$
S_{0}(x)=\frac{100-x}{100} \quad \text { and } \quad-S_{0}^{\prime}(x)=\frac{1}{100}
$$

so that

$$
\mu_{x}=\frac{1}{100-x} \quad \Rightarrow \quad \mu_{55.7}=\frac{1}{100-55.7}=0.022573
$$

(d)

$$
\begin{aligned}
& \frac{d}{d t} 15.7=(0.04879) 12,719.17+2331.11-(100,000-12,719.17)(0.022573) \\
& \frac{d}{d t} \\
& 15.7=981.488
\end{aligned}
$$

(e)

$$
\begin{aligned}
& { }_{15.8} V \approx{ }_{15.7} V+0.1((0.04879) 12,719.17+2331.11-(100,000-12,719.17)(0.022573)) \\
& { }_{15.8} V \approx 12,719.17+0.1(981.488) \\
& { }_{15.8} V \approx 12,817.32
\end{aligned}
$$

(f)

$$
\begin{aligned}
12,719.17+P^{\prime} \bar{a}_{55.7: 34.3} & =100,000 \bar{A}_{55.7: 34.3} \\
12,719.17+P^{\prime} \bar{a}_{55.7: 34.31} & =100,000\left(\bar{A}_{55.7: 34.31}+{ }_{34.3} E_{55.7}\right) \\
12,719.17+P^{\prime}(11.92421) & =100,000\left(0.3758727+\frac{10}{(44.3) 1.04^{34.3}}\right) \\
P^{\prime} & =2,440.64
\end{aligned}
$$

(g) (i) $12,719.17-200=12,519.17$
(ii)

$$
12,719.17=100,000 \bar{A}_{55.7: n}^{1} \quad \Rightarrow \quad n \approx 6.59 \text { years }
$$

(iii)

$$
12,719.17=B \bar{A}_{55.7} \quad \Rightarrow \quad B=31069.35
$$

5. Jill purchases a $\$ 250,000$ fully discrete 20 -year term life insurance policy at age 35 . Mortality is given by the SULT. Assume an annual effective interest rate of 5%. Expenses are as follows:

- Issue expenses of $\$ 1,000$.
- Maintenance expenses of $\$ 50$ per year in renewal years.
- Premium taxes of 2% of all gross premiums.
- Claims expenses of $\$ 100$ at the end of the year of death.
(a) Calculate ${ }_{5} V^{n},{ }_{5} V^{g}$, and ${ }_{5} V^{e}$ for this policy. [444.02, -347.06, -791.08]
(b) Calculate the FPT modified premiums for this policy. [187.63]
(c) Calculate ${ }_{5} V^{F P T}$ for this policy. [366.02]

Answer:

(a) First we'll calculate the net and gross premiums:

$$
\begin{gathered}
P=\frac{250000 A_{35: 20}^{1}}{\ddot{a}_{35: 20}} \\
P=\frac{250000\left(A_{35: 20 \mid}-{ }_{20} E_{35}\right)}{\ddot{a}_{35: 20}} \\
P=\frac{250000(0.37981-0.37041)}{13.024} \\
P=180.44 \\
G=\frac{250100 A_{35: 201}^{1}+950+50 \ddot{a}_{35: 20}}{(0.98) \ddot{a}_{35: 20}} \\
G=\frac{250100(0.37981-0.37041)+950+50(13.024)}{0.98(13.024)} \\
G=309.64
\end{gathered}
$$

$$
\begin{aligned}
{ }_{5} V^{n} & =250000 A_{40: \overline{151}}^{1}-P \ddot{a}_{40: \overline{151}} \\
{ }_{5} V^{n} & =250000\left(A_{40}-{ }_{10} E_{405} E_{50} A_{55}\right)-P\left(\ddot{a}_{40}-{ }_{10} E_{40} E_{50} \ddot{a}_{55}\right) \\
{ }_{5} V^{n}= & 250000(0.12106-(0.6092)(0.77772)(0.23524)) \\
& \quad-(180.44)(18.4578-(0.6092)(0.77772)(16.0599)) \\
{ }_{5} V^{n}= & 444.02
\end{aligned}
$$

$$
\begin{aligned}
&{ }_{5} V^{g}= 250100 A_{40: \overline{15}}^{1}+50 \ddot{a}_{40: \overline{15}}-(0.98) G \ddot{a}_{40: 15} \\
&{ }_{5} V^{g}= 250100\left(A_{40}-{ }_{10} E_{40} E_{50} A_{55}\right)+(50-0.98 G)\left(\ddot{a}_{40}-{ }_{10} E_{40} E_{50} \ddot{a}_{55}\right) \\
&{ }_{5} V^{g}= 250100(0.12106-(0.6092)(0.77772)(0.23524)) \\
& \quad+(50-0.98(309.64))(18.4578-(0.6092)(0.77772)(16.0599)) \\
&{ }_{5} V^{g}=-347.06
\end{aligned}
$$

(b) First we calculate ${ }_{19} E_{36}=\frac{97846.2}{(99517.8)(1.05)^{19}}=0.389097$.

Then for this policy, $\alpha=250000 v q_{35}=250000(0.000391) / 1.05=93.10$ and

$$
\begin{aligned}
\beta & =\frac{250000 A_{36: 19}^{1}}{\ddot{a}_{36: 19}} \\
& =\frac{250000\left(A_{36}-{ }_{19} E_{36} A_{55}\right)}{\ddot{a}_{36}-{ }_{19} E_{36} \ddot{a}_{55}} \\
& =\frac{250000(0.10101-(0.389097)(0.23524))}{18.8788-(0.389097)(16.0599)} \\
& =187.63 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
{ }_{5} V^{F P T}= & 250000 A_{40: \overline{15 T}}^{1}-\beta \ddot{a}_{40: \overline{151}} \\
= & 250000\left(A_{40}-{ }_{10} E_{40} E_{50} A_{55}\right)-(187.63)\left(\ddot{a}_{40}-{ }_{10} E_{40}{ }_{5} E_{50} \ddot{a}_{55}\right) \\
= & 250000(0.12106-(0.6092)(0.77772)(0.23524)) \\
& \quad-(187.63)(18.4578-(0.6092)(0.77772)(16.0599)) \\
= & 366.02
\end{aligned}
$$

6. Time to death from the onset of a disease in a study of 10 lives finds the following sample:
$1,2,4,4,5,6,6,7,10,15$
(a) Find $S(5.5)$
i. Using Kaplan-Meier [.5]
ii. Using Nelson-Åalen [.534]

Now assume that 6 other people left the study for causes other than death at times:
$3,3,4,6,8,10$.
(b) Find $S(5.5)$
i. Using Kaplan-Meier [.6482]
ii. Using Nelson-Åalen [.6657]
(c) Calculate the variance of the two estimates in (b). $[\mathrm{KM}=0.0166$, $\mathrm{NA}=0.0135]$
(d) Calculate the 95% linear confidence interval of the NA survival estimate in (b). [(0.5497, 0.7817)]
(e) Calculate the 95% log-confidence interval for the KM survival estimate in (b). $[(0.3449,0.8381)]$

