Name:

This exam contains 13 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

You may only use an SOA-approved calculator and a pencil or pen on this exam.

You are required to show your work on each problem on this exam.

Grade calculation errors: If I made an arithmetic mistake (I miscounted your total points) please come and see me and I will fix it.

Regrade requests: I make every effort to grade your test (and those of your classmates) fairly. If you feel I graded a portion of your test too harshly, please write an ex-

Problem	Points	Score
1	8	
2	14	
3	14	
4	5	
5	5	
6	6	
Total:	52	

1. Use the following life table excerpt

x	ℓ_{x}
40	1000
41	995
42	989
43	983
44	976

(a) (1 point) Calculate d_{43}
(b) (1 point) Calculate ${ }_{2} p_{41}$
(c) (1 point) Calculate ${ }_{1 \mid} q_{40}$
(d) (2 points) Calculate $e_{41: 31}$
(e) (3 points) Under UDD, calculate ${ }_{1.5} p_{41.6}$

Mostly blank page to be used as extra space if needed.
2. You are the actuary at your life insurance company. You are given the following extract from a 2-year select-and-ultimate life table, where selection corresponds to being underwritten for life insurance:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	$x+2$
40	33,519	33,485	33,440	42
41	33,467	33,428	33,378	43
42	33,407	33,365	33,309	44
43	33,340	33,294	33,231	45
44	33,265	33,213	33,143	46

Note: For all parts of this problem, carry your calculations to at least 6 decimal places. Make whatever assumptions you deem appropriate, and be sure to note any assumptions you make in your calculations.
(a) (3 points) Calculate ${ }_{3.7} p_{[41]}$
(b) (3 points) Calculate ${ }_{3.7} p_{[40]+1}$

Joe and John are both exact age 41. Joe has just purchased a $\$ 100,000$ whole life policy from your company (and hence has just been underwritten), whereas John purchased a $\$ 100,000$ whole life policy from your company one year ago (and hence was underwritten one year ago).
(c) (1 point) Who is more likely to reach age 44.7 ?
(d) (3 points) Calculate the probability that both Joe and John reach age 44.7.

John requests that the death benefit of his policy be increased from $\$ 100,000$ to $\$ 1,000,000$. A sales manager at your company suggests that because John has already been underwritten a year ago, he does not need to be underwritten again.
(e) (2 points) In a sentence or two, give a general definition, in your own words, of the term adverse selection.
(f) (2 points) In a few sentences, explain how the principle of adverse selection applies to John's request, noting the potential financial consequences to your company.

Mostly blank page to be used as extra space if needed.
3. Suppose that the survival function for a newborn is given by

$$
S_{0}(t)=e^{-k t^{2}}, \quad t \geq 0
$$

for some constant $k>0$.
(a) (4 points) Show that $S_{0}(t)$ meets the requirements to be a valid survival function.
(b) (2 points) Show that ${ }_{t} p_{x}=e^{-k t(2 x+t)}$ for this model.
(c) (2 points) Derive an expression for μ_{x} for this model, simplifying as far as possible. Now suppose that $k=0.0002$.
(d) (3 points) Calculate the median of T_{30}, i.e., the median future lifetime for (30).
(e) (3 points) Calculate $P\left[K_{30}^{(4)}=12.75\right]$

Mostly blank page to be used as extra space if needed.
4. (a) (4 points) Prove that (be sure to show all steps)

$$
A_{x: \bar{n} \mid}=A_{x: \overline{n-1}}^{1}+v_{n-1}^{n} p_{x}
$$

(b) (1 point) Explain in words why the equation above is true.

Mostly blank page to be used as extra space if needed.
5. A person currently age 65 wants to purchase a policy that will make a payment of $\$ 500,000$ on her $85^{\text {th }}$ birthday if she is alive on her $85^{\text {th }}$ birthday, and will also make a payment of $\$ 1,000,000$ on her $100^{\text {th }}$ birthday if she is still alive on her $100^{\text {th }}$ birthday. Assume that mortality follows the SULT and $i=0.05$.
(a) (1 point) Calculate $\left.{ }_{10}\right|_{5} q_{65}$ for this person.
(b) (2 points) Find the EPV of this benefit.
(c) (2 points) Find the variance of this benefit.

Mostly blank page to be used as extra space if needed.
6. Assume that the survival function for a newborn is

$$
S_{0}(t)=\frac{100-t}{100}
$$

Assume also that $i=0.06$.
(a) (1 point) Calculate the probability that a newborn dies between the ages of 1 and 2 .
(b) (2 points) Find the survival function for the future lifetime of someone currently age 30 .
(c) (3 points) Calculate $\bar{A}_{30: \overline{10}}$.

Mostly blank page to be used as extra space if needed.

