Stat 444 - Winter 2024
 Homework Assignment 1
 Due Date: Thursday, January 25th at 2:00 pm

General Notes:

- For Part I, you may submit your assignment to Learning Suite or in class.
- For Part II, you should use a spreadsheet.
- Submit electronically the Excel spreadsheet you create to answer the questions in Part II to Learning Suite. Your spreadsheet should be neatly organized and labeled; each answer should be highlighted in some manner, and it should be very clear how each of your answers was obtained.

Part I

1. Consider a 4 state discrete time model with states Healthy, Temporarily Disabled, Permanently Disabled, and Dead. The annual probability transition matrix given by:

$$
\begin{gathered}
\\
H \\
H \\
T \\
P \\
D
\end{gathered}\left(\begin{array}{cccc}
0.85 & T & P & D \\
0.25 & 0.69 & 0.05 & 0.01 \\
D & 0 & 0.1 & 0.05 \\
0 & 0 & 0 & 0.2 \\
0
\end{array}\right)
$$

For the following probability calculations, assume that we're currently at the beginning of a year and that transitions happen at the end of each year. Show all work and carry calculations to at least 5 decimal places.
(a) Calculate the probability that a person who is permanently disabled will be dead two years from now. [0.36]
(b) Calculate the probability that a person who is currently temporarily disabled will be disabled (temporarily or permanently) two years from now. [0.535]
(c) Calculate the probability that a person who is currently healthy will be healthy three years from now. [0.665875]
(d) Calculate the probability that a person who is currently healthy will be dead three years from now, having been temporarily disabled at some point in the interim. [0.01305]
(e) Consider a two year term insurance policy with $\$ 100,000$ death benefit issued to Kim, who is currently healthy. The benefit is paid upon transition to the dead state at the end of years 1 or 2 . Use $i=10 \%$. Expenses consist of 5% of gross premiums.
(i) Calculate the EPV of this life insurance. (Just consider the death benefit for this part; ignore expenses.) [2809.92]
(ii) Find the gross level annual premium for this insurance, payable at the start of each year that Kim is alive. [1556.74]
(iii) Calculate ${ }_{1} V^{g}$ for this policy, for each state. [-569.81, 3066.55, 16702.92, 0]
(iv) Now suppose that a disability benefit is added to the policy; in addition to the death benefit, the policy would now provide a one-time payment of $\$ 10,000$ upon Kim becoming permanently disabled. Also, Kim would not be required to pay a premium at time 1 if she is disabled (temporarily or permanently) at that time. Repeat parts (i), (ii), and (iii) for this new policy. [3690.08, 2191.14, -717.95, 5454.55, 18181.82, 0]

Answer:

(a) $P \rightarrow P \rightarrow D:(0.8)(0.2)=0.16$
$P \rightarrow D \rightarrow D:(0.2)(1)=0.2$
Total Prob. $=0.36$
(b) $T \rightarrow T \rightarrow T:(0.6)(0.6)=0.36$
$T \rightarrow T \rightarrow P:(0.6)(0.1)=0.06$
$T \rightarrow P \rightarrow P:(0.1)(0.8)=0.08$
$T \rightarrow H \rightarrow T:(0.25)(0.09)=0.0225$
$T \rightarrow H \rightarrow P:(0.25)(0.05)=0.0125$
Total Prob. $=0.535$
(c) $H \rightarrow H \rightarrow H \rightarrow H:(0.85)(0.85)(0.85)=0.614125$
$H \rightarrow T \rightarrow H \rightarrow H:(0.09)(0.25)(0.85)=0.019125$
$H \rightarrow H \rightarrow T \rightarrow H:(0.85)(0.09)(0.25)=0.019125$
$H \rightarrow T \rightarrow T \rightarrow H:(0.09)(0.6)(0.25)=0.0135$
Total Prob. $=0.665875$
(d) $H \rightarrow H \rightarrow T \rightarrow D:(0.85)(0.09)(0.05)=0.003825$
$H \rightarrow T \rightarrow H \rightarrow D:(0.09)(0.25)(0.01)=0.000225$
$H \rightarrow T \rightarrow P \rightarrow D:(0.09)(0.1)(0.2)=0.0018$
$H \rightarrow T \rightarrow T \rightarrow D:(0.09)(0.6)(0.05)=0.0027$
$H \rightarrow T \rightarrow D \rightarrow D:(0.09)(0.05)(1)=0.0045$
Total Prob. $=0.01305$
(e) (i) $H \rightarrow T \rightarrow D: P V=100000 /(1.1)^{2}=82644.63 ; \operatorname{Prob}=(0.09)(0.05)=0.0045$
$H \rightarrow P \rightarrow D: P V=100000 /(1.1)^{2}=82644.63 ; \operatorname{Prob}=(0.05)(0.2)=0.01$
$H \rightarrow H \rightarrow D: P V=100000 /(1.1)^{2}=82644.63 ; \operatorname{Prob}=(0.85)(0.01)=0.0085$
$H \rightarrow D \rightarrow D: P V=100000 / 1.1=90909.09 ;$ Prob $=0.01$

EPV $=2809.92$

(ii) $\mathrm{EPV}($ premiums $)=\mathrm{EPV}$ (expenses) + EPV (benefits)

$$
\begin{aligned}
G(1+(0.99) / 1.1) & =0.05 G(1+(0.99) / 1.1)+2809.92 \\
0.95 G(1+(0.99) / 1.1) & =2809.92
\end{aligned}
$$

$$
\begin{aligned}
G & =\frac{2809.92}{0.95(1+(0.99) / 1.1)} \\
G & =1556.74
\end{aligned}
$$

(iii) The gross premium reserve at time 1 is:
${ }_{1} V^{(H)}=0.01(100000) / 1.1-(0.95) 1556.74=-569.81$
${ }_{1} V^{(T)}=0.05(100000) / 1.1-(0.95) 1556.74=3066.55$
${ }_{1} V^{(P)}=0.2(100000) / 1.1-(0.95) 1556.74=16702.92$
${ }_{1} V^{(D)}=0$
(iv-i)
$H \rightarrow H \rightarrow P: P V=10000 /(1.1)^{2}=8264.46 ;$ Prob $=(0.85)(0.05)=0.0425$
$H \rightarrow H \rightarrow D: P V=100000 /(1.1)^{2}=82644.63 ; \operatorname{Prob}=(0.85)(0.01)=0.0085$
$H \rightarrow T \rightarrow P: P V=10000 /(1.1)^{2}=8264.46 ;$ Prob $=(0.09)(0.1)=0.009$
$H \rightarrow T \rightarrow D: P V=100000 /(1.1)^{2}=82644.63 ;$ Prob $=(0.09)(0.05)=0.0045$
$H \rightarrow P \rightarrow P: P V=10000 /(1.1)=9090.91 ; \operatorname{Prob}=(0.05)(0.8)=0.04$
$H \rightarrow P \rightarrow D: P V=10000\left(\frac{1}{1.1}+\frac{10}{(1.1)^{2}}\right)=91735.54 ; \operatorname{Prob}=(0.05)(0.2)=0.01$
$H \rightarrow D \rightarrow D: P V=100000 / 1.1=90909.09 ;$ Prob $=0.01$
$\mathrm{EPV}=3690.08$
(iv-ii) EPV(premiums) $=$ EPV (expenses) + EPV (benefits $)$

$$
\begin{aligned}
G(1+(0.85) / 1.1) & =0.05 G(1+(0.85) / 1.1)+3690.08 \\
0.95 G(1+(0.85) / 1.1) & =3690.08 \\
G & =\frac{3690.08}{0.95(1+(0.85) / 1.1)} \\
G & =2191.14
\end{aligned}
$$

(iv-iii) The gross premium reserve at time 1 is: ${ }_{1} V^{(H)}=[0.01(100000)+0.05(10000)] / 1.1-(0.95) 2191.14=-717.95$

$$
\begin{aligned}
& { }_{1} V^{(T)}=[0.05(100000)+0.1(10000)] / 1.1=5454.55 \\
& { }_{1} V^{(P)}=0.2(100000) / 1.1=18181.82 \\
& { }_{1} V^{(D)}=0
\end{aligned}
$$

2. For the Kolmogorov Forward Equation Example in the class notes, fill in the remainder of the table. (Slide 1.13 and here)

Answer:

t	μ_{20+t}^{01}	μ_{20+t}^{02}	$\mu_{20}^{12}+t$	μ_{20+t}^{10}	μ_{20+t}^{20}	$\mu_{20}^{21}+t$	${ }_{t} p_{20}^{00}$	${ }_{t} p_{20}^{01}$	${ }_{t} p_{20}^{02}$
0	0.03	0.06	0.1	0	0	0	1	0	0
0.25	0.03	0.0605	0.101	0	0	0	0.9775	0.0075	0.015
0.5	0.03	0.061	0.102	0	0	0	0.9554	0.0146	0.03
0.75	0.03	0.0615	0.103	0	0	0	0.9336	0.0214	0.0449
1	0.03	0.062	0.104	0	0	0	0.9123	0.0279	0.0598

3. We model the career path of an actuary using a continuous-time model with four states: Student (0), SOA member (1), CAS member (2), Retired (3). You are given the following forces of transition for an actuary age x :

- $\mu_{x}^{01}=0.06$
- $\mu_{x}^{02}=0.02$
- $\mu_{x}^{13}=0.01+\frac{x}{1000}$
- $\mu_{x}^{23}=a$
(a) Draw an appropriate state diagram for this model.
(b) Suppose that for someone age 45 who is currently a CAS member, the probability that they will be a retired by age 65 is 0.8 . Calculate a. [0.08047]
(c) For a student who is currently age 20, calculate the probability they will still be a student at age 30. [0.4493]
(d) For a student who is currently age 25 , write an expression for the probability that they will be an SOA member at age 45 . Be as explicit as possible in your expression, i.e., give as detailed an expression as you can, but do not evaluate any integrals.
(e) For a member of the SOA who is currently 50, calculate the probability that they are still an SOA member at age 60. [0.52205]
(f) Consider the following expression:

$$
\int_{0}^{30}\left[\int_{0}^{t} e^{-\int_{0}^{s} \mu_{20+r}^{01}+\mu_{20+r}^{02} d r} \cdot \mu_{20+s}^{02} \cdot e^{-\int_{0}^{t-s} \mu_{20+s+r}^{23} d r} d s\right] \cdot \mu_{20+t}^{23} d t
$$

(i) Write a verbal explanation of the probability described by this expression.
(ii) Write a simpler expression (i.e., one involving a single integral) for this same probability.
(g) Suppose that CAS membership dues are payable continuously at a rate of $\$ 500$ per year. For a CAS member who is currently age 50, calculate the EPV of their future membership dues, assuming a force of interest of $\delta=0.05$. [3832.29]
(h) Calculate the probability that a person who has just become a CAS member at age 40 pays more than $\$ 5,000$ in dues to the CAS in their lifetime. [0.44722]

Answer:

(a)
(b) First note that

$$
{ }_{t} p_{45}^{\overline{22}}=\exp \left[-\int_{0}^{t} \mu_{45+s}^{23} d s\right]=\exp \left[-\int_{0}^{t} a d s\right]=e^{-a t}
$$

so that

$$
\begin{aligned}
{ }_{20} p_{45}^{23} & =\int_{0}^{20}{ }_{t} p_{45}^{\overline{22}} \mu_{45+t}^{23} d t \\
& =\int_{0}^{20}{ }_{t} p_{45}^{22} \mu_{45+t}^{23} d t \\
& =\int_{0}^{20} e^{-a t} a d t \\
& =-\left.e^{-a t}\right|_{0} ^{20} \\
0.8 & =1-e^{-20 a} \\
e^{-20 a} & =0.2
\end{aligned}
$$

$$
a=0.08047
$$

(c)

$$
{ }_{10} p_{20}^{00}={ }_{10} p_{20}^{\overline{00}}=\exp \left\{-\int_{0}^{10} \mu_{20+s}^{01}+\mu_{20+s}^{02} d s\right\}=\exp \left\{-\int_{0}^{10} 0.08 d s\right\}=e^{-0.8}=0.4493
$$

(d)

$$
\begin{aligned}
{ }_{20} p_{25}^{01} & =\int_{0}^{20}{ }_{t} p_{25}^{\overline{00}} \cdot \mu_{25+t}^{01} \cdot{ }_{20-t} p_{25+t}^{\overline{11}} d t \\
& =\int_{0}^{20} \exp \left[-\int_{0}^{t} \mu_{25+s}^{01}+\mu_{25+s}^{02} d s\right] \cdot \mu_{25+t}^{01} \cdot \exp \left[-\int_{0}^{20-t} \mu_{25+t+s}^{13} d s\right] d t \\
& =\int_{0}^{20} \exp \left[-\int_{0}^{t} 0.08 d s\right] \cdot(0.06) \cdot \exp \left[-\int_{0}^{20-t} 0.01+\frac{25+t+s}{1000} d s\right] d t
\end{aligned}
$$

(e)

$$
\begin{aligned}
{ }_{10} p_{50}^{11} & ={ }_{10} p_{50}^{\overline{11}} \\
& =\exp \left[-\int_{0}^{10} \mu_{50+s}^{13} d s\right] \\
& =\exp \left[-\int_{0}^{10} 0.01+\frac{50+s}{1000} d s\right] \\
& =\exp \left[-\int_{0}^{10} 0.01+0.05+0.001 s d s\right] \\
& =\exp \left[-\int_{0}^{10} 0.06+0.001 s d s\right] \\
& =\exp \left[-0.06 s-\left.0.0005 s^{2}\right|_{0} ^{10}\right] \\
& =\exp [-0.65]=0.52205
\end{aligned}
$$

(f) (i) This is the probability that a student age 20 is retired by age 50 , having been a member of the CAS at some point in his career.
(ii)

$$
\int_{0}^{30}{ }_{t} p_{20}^{02} \mu_{20+t}^{23} d t
$$

(g) The EPV of their dues would be

$$
\begin{aligned}
\int_{0}^{\infty} 500 e^{-\delta t}{ }_{t} p_{50}^{\overline{22}} d t & =\int_{0}^{\infty} 500 e^{-\delta t} e^{-a t} d t \\
& =\int_{0}^{\infty} 500 e^{-(\delta+a) t} d t \\
& =\left.\frac{-500}{\delta+a} e^{-(\delta+a) t}\right|_{0} ^{\infty} \\
& =\frac{500}{\delta+a} \\
& =\frac{500}{0.05+0.08047} \\
& =3832.29
\end{aligned}
$$

(h) The person will pay more than $\$ 5,000$ in dues to the CAS if they remain a member for at least 10 years, which is

$$
{ }_{10} p_{40}^{22}=\exp \left\{-\int_{0}^{10} a d t\right\}=e^{-10 a}=e^{0.8047}=0.44722
$$

Part II

1. We model the employment status of a person initially age y (where, as usual, y is the last two digits of your student ID number) with a three state model: Employed (0), Unemployed (1), and Dead (2). The forces of transition (for a person at attained age x) are: ${ }^{1}$

- $\mu_{x}^{01}=0.2+0.0002 x^{2}$
- $\mu_{x}^{02}=0.05$
- $\mu_{x}^{12}=0.06$
- $\mu_{x}^{10}=0.08$
- $\mu_{x}^{20}=0$
- $\mu_{x}^{21}=0$

We want to use this model in order to price a 20 year unemployment insurance that pays 1400 at the beginning of each month that the person is unemployed. (The first potential payment is at time $\frac{1}{12}$ and the last potential payment is at time 20.) We will assume that the insurance is sold to people age y who are currently employed and that $i^{(12)}=0.04$.
(a) Using Euler's Forward Method with step size $h=\frac{1}{12}$, calculate ${ }_{t} p_{y}^{00},{ }_{t} p_{y}^{01}$, and ${ }_{t} p_{y}^{02}$ for $t=\frac{1}{12}, \frac{2}{12}, \ldots, 20$.
(b) Find the EPV at issue of this insurance.
(c) Now suppose that the insured is required to pay a level premium at the beginning of each month that he is Employed. (The first premium is at time 0 and the last potential premium is at time $20-\frac{1}{12}$.) Find the amount of this premium, according to the equivalence principle.
(d) Now use the same model to find the net single premium for a 20 year term life insurance issued to a person age y which pays a death benefit of $\$ 500,000$ at the end of the month of death. (Hint: Note that the insurance will pay only at the first time period the Dead state is entered.)

[^0]
[^0]: ${ }^{1}$ Example: If your BYU student ID is $123-12-3456$, then $y=56$. For this person, at time $0, \mu_{56}^{01}=$ $0.2+0.0002\left(56^{2}\right)$, and at time $2, \mu_{58}^{01}=0.2+0.0002\left(58^{2}\right)$.

