444 HW 5

Key

April 10, 2024

1a) i) $\mathrm{FAS}=60000 \mathrm{YoS}=10$ accrual rate $=.02 \mathrm{i}=.05$
$\ell_{35}=218833.9 \ell_{60-}=93085.4 \ell_{60+}=65159.8 \ell_{61}=58699.9$
$\mathrm{r}_{60-}=27925.6 r_{60+}=6187.6$
$\operatorname{Pr}("$ retire at exact age $60 ")=27925.6 / 218833.9=.12761$
$\operatorname{Pr}("$ retire at age $60.5 ")=6187.6 / 218833.9=.028275$
$\operatorname{Pr}("$ retire at age $61 ")=58699.9 / 218833.9=.26824$
$\mathrm{AL}_{35}=60000 * 10 * .02 *\left[.12761 * v^{60-35} * \ddot{a}_{60}^{(12)}+.028275 * v^{60.5-35} * \ddot{a}_{60.5}^{(12)}+\right.$ $\left..26824 * v^{61-35} * \ddot{a}_{61}^{(12)}\right]$
$\mathrm{AL}_{35}=12000 *\left[.12761 * v^{60-35} * 14.441+.028275 * v^{60.5-35} * 14.315+.26824 *\right.$ $\left.v^{61-35} * 14.186\right]$
$\mathrm{AL}_{35}=12000 * 1.73103=20772.35$
ii)
$\mathrm{AL}_{60}=100000 * 30 * .02 *\left[(6187.6 / 65159.8) * v^{0.5} * \ddot{a}_{60.5}^{(12)}+(58699.9 / 65159.8) *\right.$ $\left.v * \ddot{a}_{61}^{(12)}\right]$
$\mathrm{AL}_{60}=60000 *\left[(6187.6 / 65159.8) * v^{0.5} * 14.315+(58699.9 / 65159.8) * v * 14.186\right]$
$\mathrm{AL}_{60}=60000 *[13.49765]=809859.22$
1b) i)
$\mathrm{AL}_{35}+N C_{35 E} P V B_{35}=v * p_{35}^{(\tau)} * A L_{36}$
$\mathrm{AL}_{36}=(60000+60000(1.1)) / 2 * 11 * .02 *\left[\frac{r_{60-}}{\ell_{36}} * v^{60-36} * 14.441+\frac{r_{60+}}{\ell_{36}} *\right.$
$\left.v^{60.5-36} * 14.315+\frac{\ell_{61}}{\ell_{36}} * v^{61-36} * 14.186\right]$
$\mathrm{AL}_{36}=\left(60000+{ }_{580000(1.1)) / 2 * 11 * .02 *\left[\frac{27925.6}{207821.8} * v^{60-36} * 14.441+\frac{65159.8}{207821.8} *\right.} *\right.$
$\left.v^{60.5-36} * 14.315+\frac{58699.9}{2017821.8} * v^{61-36} * 14.186\right]$
$\mathrm{AL}_{36}=13860 *[1.91343]=26520.15$
$\mathrm{NC}_{35}=v * p_{35}^{(\tau)} * A L_{36}-A L_{35}+E P V B_{35}$
$\mathrm{EPVB}_{35}=0$
$\mathrm{AL}_{35}=20772.35$
$\mathrm{NC}_{35}=1.05^{-1} *(207821.8 / 218833.9) * 26520.15-20772.35$
$\mathrm{NC}_{35}=3219.79$
ii)
$\mathrm{AL}_{60}+N C_{60}-E P V B_{60}=v * p_{60}^{(\tau)} * A L_{61}$
$\mathrm{AL}_{61}=(100000+100000(1.1)) / 2 * 31 * .02 * \ddot{a}_{61}^{(12)}$

```
    \(\mathrm{AL}_{61}=65100 * 14.186=923508.6\)
    \(\mathrm{NC}_{60}=v * p_{35}^{(\tau)} * A L_{61}-A L_{60}+E P V B_{60}\)
    EPVB \(_{60}=(6187.6 / 65159.8) *\left(1.05^{-0.5}\right) * 14.315 *[.75(100000)+.25(110000)] *\)
\(30.5 * .02\)
    \(\mathrm{EPVB}_{60}=82945.51\)
    \(\mathrm{AL}_{60}=809859.22\)
    \(\mathrm{NC}_{60}=1.05^{-1} *(58699.9 / 65159.8) * 923508.6-809859.22+82945.51\)
    \(\mathrm{NC}_{60}=65422.07\)
    iii)
\(\mathrm{ANCR}=\operatorname{Sum}\left(\mathrm{NC}_{60}\right) / \operatorname{Sum}(\) SalaryRate \()\)
\(\mathrm{ANCR}=(3219.79+65422.07) /[(100000+600000)(1.1)]\)
\(\mathrm{ANCR}=68641.78 / 176000\)
\(\mathrm{ANCR}=0.39\)
```

1c) i)
The total actuarial liability would STAY THE SAME. Actuarial liability depends only on past service, so a new employee will have an actuarial liability of 0 and have no impact on the total actuarial liability.
ii)

Since younger, less experienced employees have a lower normal cost relative to their salary, adding a new employee who is age 35 will DECREASE the ANCR. For example, employee A's normal cost is about . 05 times their salary, while employee B's is about .65 times their salary.

2a) $\mathrm{i}^{(12)} / 12=.06 / 12=.005$
$\mathrm{i}=(1.005)^{12}-1=.06168$
$a_{\overline{12} .005}=\frac{1-1.005^{-12}}{.005}=11.61893$
$\mathrm{P}=60000(.11)(1 / 12)\left(a_{\overline{12 \mid} .005}\right)=6390.41$
$\mathrm{j}=(\mathrm{i}-\mathrm{g}) /(1+\mathrm{g})=.03076$
PV at age $24=\mathrm{P} \ddot{a}_{\overline{20}]_{j}} /(1+i)=$
$=\left[6390.41 * 1-(1+\mathrm{j})^{-12} /(j / 1+j)\right] /(1.06168)=$
$=6390.41(15.22851) / 1.06168=91662.88$
FV at age $45=91662.88\left(1.005^{12(21)}\right)=322137.48$

2b) Let $\mathrm{P}=$ annual annuity payment
Final salary $=60000(1.03)^{39}=190021.61$
Gov't benefit $=18000$
$.65=(18000+\mathrm{P}) / 190021.61$
$\mathrm{P}=.65(190021.61)-18000$
$\mathrm{P}=105514$

2c) \quad Starting amount $=322137.48$ (age 45)

$$
\begin{aligned}
& \text { Age } 45 \text { salary }=60000\left(1.03^{20}\right)=108366.67 \\
& \mathrm{P}=108366.67(1 / 12)(\mathrm{r})\left(a_{\overline{12} \cdot 005}\right)=104925.4187 r \\
& \text { Goal: } 105514 a_{65}=105514(13.6)=1434990.4 \\
& \text { FV of starting amount }=322137.48\left(1.005^{240}\right)=1066340.86 \\
& \text { Difference }=1434990.4-1066340.86=368349.54 \\
& \mathrm{P} \ddot{a}_{\overline{20}]_{j}} /(1+i) * 1.005^{240}=368349.54 \\
& \mathrm{P}=368349.54 /\left(15.22851 * 1.005^{240}\right) \\
& \mathrm{P}=7313.09758 \\
& \mathrm{P}=104925.4187 \mathrm{r} \\
& \mathrm{r}=7313.09758 / 104925.4187=0.069698 \\
& \text { Due to } 1-1 \text { matching, the employee must contribute r } / 2 \\
& \mathrm{r} / 2=.069698 / 2=0.03485
\end{aligned}
$$

2d) Their replacement ratio will decrease. The guaranteed payments in the life and 10-year certain annuity due make it slightly more expensive than a whole life annuity due. So, the same amount of money would buy a lower annual payment for the life and 10-year certain annuity due than for the whole life annuity due. Since the annual benefit amount will decrease, the replacement ratio will also decrease.

