Stat 444 - Hartman

Name:

Practice Final Exam
Time Limit: 180 Minutes

This exam contains 14 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

You may only use SOA-approved calculators and a pencil or pen on this exam.

You are required to show your work on each problem on this exam.

Problem	Points	Score
1	37	
2	22	
3	30	
4	20	
5	20	
6	16	
Total:	145	

1. Linda, age 40 and Healthy, purchases a 20 -year disability income (DI) insurance policy paying at a continuous rate of $\$ 50,000$ per year while she is Disabled. Gross premiums of $\$ 10,000$ per year are payable continuously while she is Healthy. Expenses are incurred at a continuous rate of $\$ 100$ per year in the Healthy state and $\$ 300$ per year in the Disabled state.

To model this policy, you use the following 3 -state Markov model and forces of transition, along with a force of interest of $\delta=0.06$:

$$
\mu_{x}^{01}=0.03 \quad \mu_{x}^{10}=0.02 \quad \mu_{x}^{02}=0.005+0.001 x \quad \mu_{x}^{12}=0.02+0.002 x
$$

You are also given the following EPVs and probabilities, calculated at $\delta=0.06$:

$$
\begin{array}{cccc}
\bar{a}_{50}^{00}=7.2847 & \bar{a}_{50}^{01}=1.0765 & \bar{a}_{50}^{10}=0.7399 & \bar{a}_{50}^{11}=3.9147 \\
\bar{a}_{60}^{00}=6.3865 & \bar{a}_{60}^{01}=0.7979 & \bar{a}_{60}^{10}=0.5446 & \bar{a}_{60}^{11}=3.2073 \\
\bar{a}_{50: \overline{10}}^{11}=3.4896 & \\
{ }_{10} p_{50}^{00}=0.41321 & { }_{10} p_{50}^{01}=0.09309 & { }_{10} p_{50}^{10}=0.06313 & { }_{10} p_{50}^{11}=0.22581
\end{array}
$$

a. [8 pts] Calculate the probability that Linda remains Healthy for the entirety of the 20 years, and give the symbol for this probability.
b. [9 pts] Write the Kolmogorov Forward Equations, with boundary conditions, for $\frac{d}{d t} t p_{x}^{00}$, $\frac{d}{d t} t p_{x}^{01}$, and $\frac{d}{d t}{ }_{t} p_{x}^{02}$.
c. [8 pts] Use Euler's Forward Method with a step size of 0.25 to estimate the probability that Linda is Disabled at time 0.5 .
d. $[6 \mathrm{pts}]$ Calculate $\bar{a}_{50: 10}^{10}$.
e. [6 pts] Calculate the gross premium reserve at time 10, if Linda is in state 1 (Disabled) at that time.

Stat 444 - Hartman \quad Practice Final Exam - Page 4 of 14

Mostly blank page to be used as extra space if needed.
2. Consider a $\$ 200,000$ fully-discrete, first-to-die, 11-year term life insurance policy issued to (55) and (45). Assume that mortality for these individuals is given by the SULT, they have independent future lifetimes, and that $i=5 \%$. The gross annual premium for this policy is $\$ 2,700$.

Expenses for this policy are:

- \$1,000 at issue
- $\$ 50$ maintenance expense every year (including the first year)
- 3% of gross premiums
a. [2 pts] Calculate ${ }_{11} q_{55: 45}$.
b. [2 pts $]$ Calculate the probability that a benefit is paid for this policy.
c. $[4 \mathrm{pts}]$ Calculate $A_{\sqrt{56: 46: \overline{10}}}^{\frac{1}{1}}$.
d. $[6 \mathrm{pts}]$ Calculate the gross premium reserve at duration 1 for this policy, i.e., ${ }_{1} V^{g}$.
e. [8 pts] Calculate the FPT reserves at durations 1 and 2 for this policy, i.e., ${ }_{1} V^{F P T}$ and ${ }_{2} V^{F P T}$.

Stat 444 - Hartman \quad Practice Final Exam - Page 6 of 14

Mostly blank page to be used as extra space if needed.
3. [30 pts] You are doing a profit analysis for a block of 1000 fully discrete 20-year term insurance policies, issued to independent lives age 55 . Each policy pays 250,000 at the end of the year of death. The reserve basis for the policies is:

- $q_{55}=0.003 \quad q_{56}=0.004$
- ${ }_{0} V=0 \quad{ }_{1} V=1292.26 \quad{ }_{2} V=2949.98$
- $i=0.06$
- The gross annual premium is 2,523 per policy
- Issue expenses are 500 per policy, incurred at the start of the first year
- Maintenance expenses are 100 per policy per year (at the start of the year), including the first year

The actual experience for the first two years is given below:

Year	Interest Earned	Expenses	Deaths
1	4%	430,000	5
2	6%	110,000	5

For each year, calculate the profit or loss due to mortality, interest, expenses, and overall.

Stat 444 - Hartman \quad Practice Final Exam - Page 8 of 14

Mostly blank page to be used as extra space if needed.
4. You sell a Type B Equity-Indexed Universal Life insurance product with the following features:

- Premiums are paid at the start of the year; there is a 2% charge on each premium paid.
- Maintenance expense and COI deductions are done at the start of each year.
- The specified amount is 200,000 .
- Assume for now that corridor factors do not apply.
- The credited rate is determined according to the following:
- Participation rate: 70%
- Index: DJIA
- Cap: 9\%
- Floor: 1\%

You are also given the following information:

Policy Year (k)	Premium	$\%$ Premium Charge		COI	Maint. Charge Expense Charge	DJIA Return	$A V_{k}$

($A V_{k}$ represents the account value at the end of policy year k.)
a. [2 pts] Determine the credited interest rate for policy year 9.
b. [2 pts] Determine the credited interest rate for policy year 10 .
c. [2 pts] Determine the credited interest rate for policy year 11 .
d. $[4 \mathrm{pts}]$ Calculate the cash surrender value at the end of policy year 10.
e. [4 pts] Calculate the account value at the end of policy year 11.
f. [2 pts] Calculate the death benefit payable if the insured dies in policy year 11.
g. [4 pts] If the corridor factor is $\gamma=2.5$, verify that the DB (or NAR) is sufficiently large so that the death benefit in policy year 11 does not need to be increased. Show your calculations.

Mostly blank page to be used as extra space if needed.
5. An insurer is designing a 20 -year single premium variable annuity policy with a guaranteed maturity benefit of 80% of the single premium. The basis and policy information is:

- Age at issue: 60
- Front end expense loading: 2%
- Annual management charge: 2% at each year end, including the first
- Survival model: Standard Ultimate Survival Model
- Lapses: 5% at each year end, except the final year
- Risk-free rate: 4% per year, continuously compounded
- Volatility: 20% per year

Answer the following questions:
a. [6 pts] Calculate the value of the GMMB at the issue date for a single premium of 100 .
b. [14 pts] Calculate the value of the GMMB two years after issue, assuming the policy is still in force and that the underlying stock prices have decreased by 5% since inception.

Mostly blank page to be used as extra space if needed.
6. You act as the valuation actuary for a corporation which sponsors a final average salary defined benefit pension plan for its employees. The age retirement benefit provisions and valuation assumptions for the corporation's plan are described below.

- The accrual rate is 2% per year of service.
- The final average salary is defined as the salary over the final year of employment.
- The Normal Form of pension is a life annuity with no guarantee, paid monthly in advance.
- The normal retirement age is 65 .
- Salaries increase each year on 1 January at a rate of 2.5% per year.
- $i=0.05$
- Mortality of active members and retirees follows the Standard Ultimate Life Table.
- There are no exits prior to retirement at age 65, other than death.
- The two-term Woolhouse formula is used for annuities paid more frequently than annually.
- The plan is funded using the Traditional Unit Credit method.

You are also given the following summary membership data, as of the valuation date, 1 January 2020.

Age	Number of members	Status	Pension in payment	Salary per member in 2019	Years of service per member
35	20	Active	-	45,000	8
60	5	Active	-	62,000	25
70	1	Retired	32,000	-	30

a. [4 pts] Calculate the total actuarial liability for the corporation's pension plan as of the valuation date.
b. [6 pts] Calculate the normal cost for 2020, expressed as a percentage of the total payroll at the valuation date.
c. [2 pts] The corporation terminated the employment of all the 35 -year-old members on the valuation date. Calculate the revised normal contribution rate for the corporation, expressed as a percentage of the total payroll of the remaining plan members.
d. [4 pts] Without further calculation, state whether the change in the normal contribution rate would be greater or smaller under Projected Unit Credit funding. Justify your answer.

Mostly blank page to be used as extra space if needed.

