This exam contains 14 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

You may only use SOA-approved calculators and a pencil or pen on this exam.

You are required to show your work on each problem on this exam.

Problem	Points	Score
1	37	
2	22	
3	30	
4	20	
5	20	
6	16	
Total:	145	

1. Linda, age 40 and Healthy, purchases a 20-year disability income (DI) insurance policy paying at a continuous rate of \$50,000 per year while she is Disabled. Gross premiums of \$10,000 per year are payable continuously while she is Healthy. Expenses are incurred at a continuous rate of \$100 per year in the Healthy state and \$300 per year in the Disabled state.

To model this policy, you use the following 3-state Markov model and forces of transition, along with a force of interest of $\delta = 0.06$:

 $\mu_x^{01} = 0.03$ $\mu_x^{10} = 0.02$ $\mu_x^{02} = 0.005 + 0.001x$ $\mu_x^{12} = 0.02 + 0.002x$

You are also given the following EPVs and probabilities, calculated at $\delta = 0.06$:

$$\overline{a}_{50}^{00} = 7.2847 \qquad \overline{a}_{50}^{01} = 1.0765 \qquad \overline{a}_{50}^{10} = 0.7399 \qquad \overline{a}_{50}^{11} = 3.9147$$

$$\overline{a}_{60}^{00} = 6.3865 \qquad \overline{a}_{60}^{01} = 0.7979 \qquad \overline{a}_{60}^{10} = 0.5446 \qquad \overline{a}_{60}^{11} = 3.2073$$

$$\overline{a}_{50:\overline{10}|}^{11} = 3.4896$$

$${}_{10}p_{50}^{00} = 0.41321 \qquad {}_{10}p_{50}^{01} = 0.09309 \qquad {}_{10}p_{50}^{10} = 0.06313 \qquad {}_{10}p_{50}^{11} = 0.22581$$

- a. [8 pts] Calculate the probability that Linda remains Healthy for the entirety of the 20 years, and give the symbol for this probability.
- b. [9 pts] Write the Kolmogorov Forward Equations, with boundary conditions, for $\frac{d}{dt} t p_x^{00}$, $\frac{d}{dt} t p_x^{01}$, and $\frac{d}{dt} t p_x^{02}$.
- c. [8 pts] Use Euler's Forward Method with a step size of 0.25 to estimate the probability that Linda is Disabled at time 0.5.

- d. [6 pts] Calculate $\overline{a}_{50:\overline{10}|}^{10}$.
- e. [6 pts] Calculate the gross premium reserve at time 10, if Linda is in state 1 (Disabled) at that time.

2. Consider a \$200,000 fully-discrete, first-to-die, 11-year term life insurance policy issued to (55) and (45). Assume that mortality for these individuals is given by the SULT, they have independent future lifetimes, and that i = 5%. The gross annual premium for this policy is \$2,700.

Expenses for this policy are:

- \$1,000 at issue
- \$50 maintenance expense every year (including the first year)
- 3% of gross premiums
- a. [2 pts] Calculate $_{11}q_{55:45}$.
- b. [2 pts] Calculate the probability that a benefit is paid for this policy.
- c. [4 pts] Calculate $A_{\overline{56:46}:\overline{10}|}$.
- d. [6 pts] Calculate the gross premium reserve at duration 1 for this policy, i.e., ${}_{1}V^{g}$.
- e. [8 pts] Calculate the FPT reserves at durations 1 and 2 for this policy, i.e., $_1V^{FPT}$ and $_2V^{FPT}.$

- 3. [30 pts] You are doing a profit analysis for a block of 1000 fully discrete 20-year term insurance policies, issued to independent lives age 55. Each policy pays 250,000 at the end of the year of death. The reserve basis for the policies is:
 - $q_{55} = 0.003$ $q_{56} = 0.004$
 - $_0V = 0$ $_1V = 1292.26$ $_2V = 2949.98$
 - i = 0.06
 - The gross annual premium is 2,523 per policy
 - Issue expenses are 500 per policy, incurred at the start of the first year
 - Maintenance expenses are 100 per policy per year (at the start of the year), including the first year

The actual experience for the first two years is given below:

Year	Interest Earned	Expenses	Deaths
1	4%	430,000	5
2	6%	$110,\!000$	5

For each year, calculate the profit or loss due to mortality, interest, expenses, and overall.

4. You sell a Type B Equity-Indexed Universal Life insurance product with the following features:

- Premiums are paid at the start of the year; there is a 2% charge on each premium paid.
- Maintenance expense and COI deductions are done at the start of each year.
- The specified amount is 200,000.
- Assume for now that corridor factors do not apply.
- The credited rate is determined according to the following:
 - Participation rate: 70%
 - Index: DJIA
 - Cap: 9%
 - Floor: 1%

You are also given the following information:

Policy	Premium	% of	COI	Maint.	DJIA	AV_k	Surrender
Year (k)		Premium	Charge	Expense	Return		Charge
		Charge		Charge			
9	3000	60	920	50	6%	78,000.00	5%
10	3000	60	950	50	-2%	80,739.40	4%
11	3000	60	990	50	15%	_	3%

 $(AV_k \text{ represents the account value at the end of policy year } k.)$

a. [2 pts] Determine the credited interest rate for policy year 9.

b. [2 pts] Determine the credited interest rate for policy year 10.

c. [2 pts] Determine the credited interest rate for policy year 11.

d. [4 pts] Calculate the cash surrender value at the end of policy year 10.

e. [4 pts] Calculate the account value at the end of policy year 11.

f. [2 pts] Calculate the death benefit payable if the insured dies in policy year 11.

g. [4 pts] If the corridor factor is $\gamma = 2.5$, verify that the DB (or NAR) is sufficiently large so that the death benefit in policy year 11 does not need to be increased. Show your calculations.

- 5. An insurer is designing a 20-year single premium variable annuity policy with a guaranteed maturity benefit of 80% of the single premium. The basis and policy information is:
 - Age at issue: 60
 - Front end expense loading: 2%
 - Annual management charge: 2% at each year end, including the first
 - Survival model: Standard Ultimate Survival Model
 - Lapses: 5% at each year end, except the final year
 - Risk-free rate: 4% per year, continuously compounded
 - Volatility: 20% per year

Answer the following questions:

- a. [6 pts] Calculate the value of the GMMB at the issue date for a single premium of 100.
- b. [14 pts] Calculate the value of the GMMB two years after issue, assuming the policy is still in force and that the underlying stock prices have decreased by 5% since inception.

- 6. You act as the valuation actuary for a corporation which sponsors a final average salary defined benefit pension plan for its employees. The age retirement benefit provisions and valuation assumptions for the corporation's plan are described below.
 - The accrual rate is 2% per year of service.
 - The final average salary is defined as the salary over the final year of employment.
 - The Normal Form of pension is a life annuity with no guarantee, paid monthly in advance.
 - The normal retirement age is 65.
 - Salaries increase each year on 1 January at a rate of 2.5% per year.
 - i = 0.05
 - Mortality of active members and retirees follows the Standard Ultimate Life Table.
 - There are no exits prior to retirement at age 65, other than death.
 - The two-term Woolhouse formula is used for annuities paid more frequently than annually.
 - The plan is funded using the Traditional Unit Credit method.

You are also given the following summary membership data, as of the valuation date, 1 January 2020.

Age	Number of	Status	Pension in	Salary per	Years of
	members		payment	member in	service per
				2019	member
35	20	Active	-	45,000	8
60	5	Active	-	62,000	25
70	1	Retired	32,000	-	30

- a. [4 pts] Calculate the total actuarial liability for the corporation's pension plan as of the valuation date.
- b. [6 pts] Calculate the normal cost for 2020, expressed as a percentage of the total payroll at the valuation date.
- c. [2 pts] The corporation terminated the employment of all the 35-year-old members on the valuation date. Calculate the revised normal contribution rate for the corporation, expressed as a percentage of the total payroll of the remaining plan members.
- d. [4 pts] Without further calculation, state whether the change in the normal contribution rate would be greater or smaller under Projected Unit Credit funding. Justify your answer.