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Abstract

Long-term care insurance (LTCI) should be an essential part of a family financial plan. It could protect
assets from the expensive and relatively common risk of needing disability assistance. In spite of this, LTCI
purchase rates are lower than expected. While there are multiple reasons for this trend, it is partially due
to the difficultly insurers have operating profitably as LTCI providers. If LTCI providers were better able to
forecast claim rates then they would have less difficulty maintaining profitability. In this paper, we develop
several models to improve upon those used by insurers to forecast claim rates. We find that standard logistic
regression is vastly outperformed by tree-based and neural network models. More modest improvements can
be found by using a neighbor-based model. Of all our tested models, the random forest models were the
consistent top-performers. Additionally, simple sampling techniques influence the performance of each of
the models. This is especially true for the deep neural net which improves drastically under oversampling.
The effects of the sampling vary depending on the size of the available data. To better understand this
relationship, we thoroughly examine three states of with various amounts of available data as case studies.

1. Introduction

About half of the 50-year-olds in the United States will spend time in a nursing home before they die
(Hurd et al., 2014). About 10% will incur long-term care expenses in excess of $200,000 (Favreault and Dey,
2016). Long-term care insurance (LTCI) should be able to protect members’ assets from this expensive risk
that is, relative to other insurable risks, common. Surprisingly, only about 10% of individuals over the age
of 62 have private LTCI (Braun et al., 2019). There are three main reasons that long-term care purchase
rates are lower than expected: public insurance, adverse selection, and difficult profitability for insurers.

Public Insurance. Medicaid offers assistance for nursing home expenses for those who meet a means test.
Because of this, when looking at a sample from the Health and Retirement Survey, LTCI purchase rates are
lower for those in the bottom income quintile (2%) than for those in the top quintile (20%). In addition to
Medicaid, a simple lack of means to pay premiums can also reduce the purchase rates for those with less
income. This does not explain why those with the highest incomes don’t more commonly purchase LTCI.

Adverse Selection. People understand more about their long-term care risk than is readily observable by
an agent or insurer. Finkelstein and McGarry (2006) found that self-reported nursing home entry probabilities
are predictive of nursing home use even after controlling for other observable characteristics.

Difficult Profitability for Insurers. When an insurance product is exposed to adverse selection it is
more difficult for an insurance company to profitably write. Additionally, most long-term care insurance is
purchased from brokers or agents (Thau et al., 2014) whose commission could be equal to or exceed the first
year’s premium. The underwriting questionaire is long and detailed, increasing costs for the insurer and
reducing the number of people willing to apply for LTCI. Rejections are common. Thau et al. (2014) found
that 20% of formal applications are rejected. Additionally, Ameriks et al. (2016) found that some affluent
individuals are not interested in the products currently available, but would be interested in another product
not currently available.
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All of the above difficulties in writing LTCI imply that accurate modeling of long-term care risk is
essential for individual insurers, the industry, and to protect retiree assets across the country. The difficulty
of modeling long-term care risk can be seen in the current loadings and limitations on the policies. In
2000, a representative policy only covered 34% of expected lifetime costs (Brown and Finkelstein, 2007).
In 2010, a representative policy covered 66% of lifetime costs (Brown and Finkelstein, 2011). Those two
studies also note that the loads on LTCI policies varied from 0.2-0.5 (increased premium above the expected
losses, accounting for expenses, commissions, and profit). Those loads are much higher in LTCI than in
other industries; e.g. 0.04-0.15 in group medical insurance (Karaca-Mandic et al., 2011) and 0.15-0.25 in life
annuities (Mitchell et al., 1999).

Modeling in LTCI takes two main forms, depending on the data available. The first is modeling the
population as a whole and their propensity to need long-term care insurance through reductions in their
ability to perform the common tasks of daily living. This provides information about the market as a whole
and the potential to better understand the disability process more broadly. The second option is to look
directly at long-term care insurance industry data to better predict claims directly. This has the advantage
of incorporating the unique characteristics of those who purchase long-term care insurance, similar to the
differences in the annuitant population in life insurance compared to the entire population.

There is an active and robust stream of literature examining disability transition models. Olivieri and
Pitacco (2001) built a model with a single level of disability. Rickayzen and Walsh (2002) developed a
multi-state model for the United Kingdom and discussed the impacts of their model on the future need
for long-term care. Leung et al. (2004) applied the same model in Australia. Leung (2004) generalized
Thiele’s differential equation to perform reserve and premium calculations for an LTCI product in Australia.
Pritchard (2006) used a seven-state transition model. Stallard (2011) presented a life table approach. Brown
and Warshawsky (2013) showed that disability transition rates vary greatly based on initial health status.
Fong et al. (2015) used a GLM to estimate a three-state functional disability model. Shao et al. (2017)
built a four-state model and used it to price products. Li et al. (2017) incorporated systematic trend and
uncertainty. Recently, Sherris and Wei (2020) developed a model both of functional disability and health
status and used that model to price a variety of insurance products. They also found that integrating LTC
and life annuities in a single product can help reduce systematic uncertainty.

Modeling directly on LTCI industry data is not as prevalent for a few reasons. First, industry data is
more difficult to acquire as companies strive to maintain competitive advantage and protect the privacy
of their policyholders. Second, industry information is much harder to generalize across companies due to
differences in policy characteristics, underwriting practices, and marketing emphases. Lally and Hartman
(2016) analyzed industry data from a single large LTCI insurer. The Society of Actuaries has published 6
different reports since 2015 looking directly at the long-term care industry in the United States. In 2015, they
published three reports based on a 2000-2011 long-term care intercompany experience study. In January,
they published a report describing the data collection and fit GLMs to predict claim incidence, termination,
and utilization (Bodnar et al., 2015b). In April, they developed basic tables for LTCI experience (Bodnar
et al., 2015a). In July, they produced the policy terminations aggregate databases (Purushotham, 2015). In
the subsequent years, they produced reports on persistence (Ho, 2016), table caveats (Society of Actuaries,
2017), and incidence rates over time (Morton and Donato, 2018).

In this paper we build on the work above to develop better models for predicting claim incidence in LTCI.
We use a countrywide dataset including data from 12 of the 22 largest LTCI companies in the US (their
particular identities are hidden to maintain privacy). We fit several different models to the state-level data
to find which best predicts claim incidence. Ideally these models could help insurers reduce premium (by
reducing the load), make more steady profits, and help the LTCI market stabilize.

2. Data

Our dataset is developed from the claim incidence spreadsheet accompanying Bodnar et al. (2015b). It
contains 14.8 million policy years and 29 variables (Table 1). The amount of data in each state is radically
different from the three biggest states (FL-1.3M policy years, CA-1.1M, and TX-820K) to the three smallest



(AK-11K, WY-25K, and WV-28K). This state-to-state variation in data quantity and the inherent differences
between each state’s regulatory environment led us to consider each state individually. Accordingly, data
was separated by state prior to any preprocessing or modeling.

The data, in its form used by Bodnar et al. (2015b), tracked the number of unique claims an individual
had in the data development period. A unique claim was defined as a claim not within six months of another
claim. For our analysis, we had all of the exposures and claims with the same set of explanatory variables
grouped together. We divided them up into single exposure rows to allow for binary predictions, rather than
counts. This more closely follows what an actuary would do in practice, predicting whether or not each
individual policyholder will have a claim.

3. Methods

We are interested both in preprocessing through training sampling and comparing various classifcia-
tion methods. We begin by discussing the training sampling approaches used and then discuss modeling
considerations. We then give special emphasis to the architecture of the neural network.

3.1. Training Sampling

Because the proportion of observations that had a claim was consistently low, ranging from 0.007 in
Hawaii to 0.05 in Florida, we investigate different sampling approaches on training data and their influence
on model fit. We were specifically interested in how simple oversampling and undersampling would impact
classification strength measured by a model’s area under the ROC curve (AUC). Oversampling is sampling
with replacement from the less-represented class (in our case those on claim) until both classes are equally
represented. If there are m observations without a claim, then there will be 2n observations in this new
dataset, half of which had a claim. This necessarily exposes a model to the some or all observations with
a claim more than once. Undersampling is a similar process, but instead of sampling from those with a
claim a sample is taken from those without a claim without replacement until again both classes are equally
represented. If there are k observations with a claim, then there will be 2k observations in this new dataset,
half of which are sampled from those without a claim. Undersampling removes a potentially large proportion
of the training data and many observations without a claim may never be used for model training or holdout
evaluation.

3.2. Modeling pipeline

To begin the modeling pipeline, state-segmented data was separated into train and test sets using a 90/10
split. We chose to use cross-validation for models that required a hyperparameter search in order to guard
against validation bias as models were tuned. Because of this no explicit partition of the training data was
held out for validating these models. At this stage, training data was both oversampled and undersampled.
Then, the test set and all three training sets (the original set, the oversampled set, and the undersampled
set) were temporarily saved to ensure that all models were fitted with and evaluated on identical data. This
facilitated direct comparison between the models after taking into account the sampling treatment of the
training set used.

Five types of models were fit for each of the three sampling methods mentioned above, totaling fifteen
models for every state. The five model types included logistic regression, K-nearest neighbors (KNN), a
gradient boosted forest, a random forest, and a deep neural network (DNN). All models were written in
Python, and all but the neural network were implemented using the appropriate functions from the Scikit-
Learn package. The DNN was written in Keras with the Tensorflow package for backend computation. For
the two tree models, a gridsearch was used to determine optimal hyperparamter values. We considered the
logistic regression to be the baseline for model performance.

After any needed hyperparameter tuning, all models were fit on the entire training partition and then
evaluated on the test set. AUC scores were taken to compare model performance.



Variable

Description

Gender
IssueAgeBucket

Incurred AgeBucket
IssueYear
PolicyYear
MaritalStatus
PremClass
UnderwritingType
CovTypeBucket
TQStatus

InflRider

RatelncreaseFlag
NHOrigDailyBenBucket

ALFOrigDailyBenBucket
HHCOrigDailyBenBucket
NHBenPeriodBucket
ALFBenPeriodBucket
HHCBenPeriodBucket
NHEPBucket
ALFEPBucket
HHCEPBucket

Region

StateAbbr

Exposure

ClaimCount

CountNH

CountALF

CountHHC
CountUnk

Gender of the policyholder

Issue age of the policyholder, divided into 5 year buckets between ages 50
and 90

Age of the policy holder during the policy year, divided into 5 year buckets
between ages 50 and 90

Year the policy was issued, divided into 3 year buckets between 1972 and
2011

Tenure of the policy, between 1 and 37

Marital status of the policyholder

Premium class of the policyholder, whether preferred, standard, or substan-
dard

Underwriting type, whether full or other (accelerated, guaranteed issue, etc.)
Coverage type, whether comprehensive or other

Tax-qualified status, whether qualified, not qualified, or unknown

Inflation rider, whether guaranteed purchase option, inflation rider, none, or
unknown

Indicates whether this policy has ever had a rate increase

Original daily benefit for nursing home claims grouped into <100, 100-199,
200, and unknown

Original daily benefit for assisted living facility claims grouped into <100,
100-199, 200+, and unknown

Original daily benefit for home health care claims grouped into <100, 100-
199, 200+, and unknown

Benefit period of the policyholder bucketed into year groups of <1, 1-2, 3-4,
5+, unlimited, and unknown for nursing home claims

Benefit period of the policyholder bucketed into year groups of <1, 1-2, 3-4,
5+, unlimited, and unknown for assisted living facility claims

Benefit period of the policyholder bucketed into year groups of <1, 1-2, 3-4,
5+, unlimited, and unknown for home health care claims

Elimination period of the policyholder bucketed into 0, 20, 30, 60, 90/100,
>100, and unknown for nursing home claims.

Elimination period of the policyholder bucketed into 0, 20, 30, 60, 90/100,
>100, and unknown for assisted living facility claims

Elimination period of the policyholder bucketed into 0, 20, 30, 60, 90/100,
>100, and unknown for home health care claims

Location consolidated into four regions (Midwest, Northeast, South, West,
and unknown)

Location of the policy by state

Exposure in policy years

Total claims

Nursing home claims

Assisted living facility claims

Home health care claims

Unknown claims

Table 1: Policy-level covariates
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Figure 1: Schematic of Deep Neural Network Model

3.3. Neural Network Architecture

Of special interest is the architecture of the neural network (Figure 1). The size of these kinds of
models combined with hyperparameter settings can improve or hurt model performance, so care was taken
to construct the model in a way that is consistent with the modeling objectives. With regard to model
size, generally measured in the number of parameterized nodes in the network, Delalleau and Bengio (2011)
hypothesized that deeper networks are better able to learn hierarchical relationships within the data. Their
hypothesis was confirmed more recently by Mhaskar et al. (2017). The implication of this for practitioners
is that deep neural networks more efficiently create and use sub-representations of data relationships than
shallow, broader networks with the same number of parameterized nodes. In accordance with this, we built
a model with 5 hidden layers, to keep the model deep enough for our classification task, but also allow the
number of nodes per hidden layer to be tuned through a hyperparameter grid search. This allowed the total
model size to vary without losing the learning benefits that deeper networks provide.

To keep the gradient tractably small, batch normalization was applied after every layer except for the
output layer. Exponential linear units (ELUs), introduced by Clevert et al. (2015), were used as the activation
for those same layers, selected for their near-zero mean and computational advantages. To be consistent with
the original ELU implementation, He initialization, first used by He et al. (2015), was used for initial weights.
All biases were initialized at zero. A sigmoid function was used as the activation function for the output
layer so the output could be interpreted as the probability that an observation would go on claim given the
data features.

Gradient descent on the network was performed using the Adam optimizer introduced in Kingma and
Ba (2014) for its computational speed, though this did come at a potential performance trade-off as Wilson
et al. (2017) did show that this optimizer will never reach the global optimum and risks severe over-fitting.
To reduce this risk of over fitting, dropout regularization, introduced in Hinton et al. (2012), was employed
after batch normalization. The dropout rate was determined for each model by grid search.

4. Results

After the models performance was assessed, some trends emerged. The first was a confirmation of an
accepted fact: with more data, models are more powerful. Every model performed better when more data
was available for training. The neural network, random forest, and KNN algorithms were the most sensitive



to the increase in data quantity. Gradient boosted forest and logistic regression were somewhat less sensitive,
but had the same performance bump.
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Figure 2: Model AUC Performance Against Positive Class Prevelance, Faceted by Model

Also notable was that different models respond differently to different sampling approaches (Figure 2).
Again, the gradient boosted forest and logistic regression were least sensitive to the changes. Logistic regres-
sion, however, had fewer low-performing models when oversampling was used, but by a narrow margin. The
random forest algorithm preferred undersampling when the positive class was less represented (in number of
claims per policy), and as the representation increased undersampling and oversampling performed similarly.
Both the KNN and DNN vastly preferred oversampling.

The effectiveness of sampling varied strongly with the claim prevalence. When less than 1.5% of the
data had claims all models were less able to able to discriminate between observations regardless of sampling
method. This effect was most pronounced in the models that were top-performers when the positive class
made up a larger share of the observations. As an example, no neural network trained using oversampled
data when more than 1.5% had claims had an AUC score lower than 0.9, while scores when less than 1.5%
had claims varied wildly from above 0.9 to below 0.4. The variability of AUC scores for similarly represented
data did not increase as sharply when data was undersampled or imbalanced, though for the DNN these
models consistently underperformed compared to models trained with oversampled data. No analysis was
done to determine what data attributes other than claim proportion accounted for the variation.

With the exception of some states with few claims, the random forest model tended to outperform all other
models (Figure 3). The DNN was similarly dominant when oversampling was used, but when the training
data was undersampled or imbalanced the network remained a strong performer, but did not distinguish
itself from the other three models. The consistent outperformance of the gradient boosted forest by the
random forest suggests that this data problem is better approached by increasing the number of times the
data is seen by a model and not simply by optimizing a gradient descent. The success of the oversampled
DNN over other models also points to a need to find deeper representations of intervariate relationships for
which ensembling and deep learning are better suited.

5. Case Studies

Taking a deeper look at model performance on data of specific states helps us to understand the nuances of
the model and sampling method interplay. We look closer at models trained on data from Montana, Kentucky,
and Virginia, approximately representing the first quartile, median, and third quartile, respectively, for both
number of observations and frequency of claims. We begin with Kentucky.
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Figure 3: Model AUC Performance Against Positive Class Prevelance, Faceted by Sampling Method

5.1. Kentucky

After all of the models are fit and evaluated as we describe in the methods section, we can take a look at
the AUC scores (Table 2). A cursory overview shows that a random forest model (RF) with undersampled
training data is the top performer with an AUC score of 0.932. It is followed by a deep neural network (DNN)
and random forest with oversampled training data, scoring 0.916 and 0.903 on the AUC metric respectively.
The other models have less impressive results, with a KNN model using undersampling being the lowest
performer (0.815 AUC).

Sampling Model AUC
undersample RF 0.932
oversample DNN  0.916
oversample RF 0.903
imbalanced RF 0.888
oversample GBF 0.883
undersample GBF 0.881
imbalanced GBF  0.878
oversample KNN  0.865
imbalanced Logit  0.853
oversample Logit  0.852
undersample Logit  0.849
imbalanced DNN  0.849
imbalanced KNN  0.843
undersample DNN  0.833
undersample KNN  0.815

Table 2: AUC scores for Kentucky models

To get a different view of model performance, we can consider the ROC curves of these models (Figure
4). From these plots, we can see that there is something going on with the random forest model when no
sampling is applied (the data is left imbalanced) and when the training data is oversampled. The totally
vertical segment along the y-axis of these graphs suggests that there is a high proportion of positive-class
predictions that are being correctly identified with an equal probability at or near 1. The long, straight
segments on both plots as the false positive rate approaches 1 indicates that there might also be a sizable
segment of our positive-class observations being misidentified entirely and assigned an equal probability near
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Figure 4: ROC Curve of Kentucky Models, Faceted by Sampling Method

0. A different view shows that the density of predicted probabilities sits on the tails for the imbalanced and
oversampled random forests, confirming the behavior seen in the ROC curves (Figure 5)

The bimodal distributions of claim predictions seen in the imbalanced and oversampled random forest
models indicate that the models have problems with overfitting. Because we do not see this problem in
the undersampled random forest, the culprits for the overfitting are the non-claim observations present in
imbalanced and oversampled training sets, but not the undersampled one. The bimodal appearance of the
oversampled DNN predictions also suggests the same kind of overfitting. From these modeling results we can
hypothesize that there is a small subset of LTC claims that look nearly identical to non-claim observations.
The presence of these observations gives the undersampled random forest an advantage over the other models
because the algorithm already has a strong ability to discriminate and is not likely to be exposed to the
non-claim observations that were contributing to overfitting. Thus, we are able to conclude not just that the
undersampled random forest is the best model for Kentucky data, but also we are able to gain an intuition
as to why.
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Figure 5: Density of Model Predictions for Kentucky, Faceted by Sampling Method and Model



5.2. Montana

The data for Montana falls at roughly the first quartile of states when ordered by quantity of data.
Looking at its AUC curve, we can get a clearer picture of the ways in which a smaller data set influences
model performance (Figure 6).

Immediately apparent is the same problem of random forest overfitting for both imbalanced and oversam-
pled training data. When data is left imbalanced, the gradient boosted forest model also begins to overfit,
but not to the same extent. We can understand this as being caused by the lower number of claims present
in this data set. Fewer observations means that the subtleties that distinguish a claim from a non-claim are
not learned.
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Figure 6: ROC Curve of Montana Models, Faceted by Sampling Method

Looking at Montana’s predictive densities, it is apparent that the oversampled DNN overfits more than
the same modeling setup did when trained on Kentucky data (Figure 7). The weakness of the network
when trained on undersampled data is also exacerbated by having less data to learn from. Overall, the same
behaviors are present in Montana as were in Kentucky, only they are more dramatic.
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Figure 7: Density of Model Predictions for Montana, Faceted by Sampling Method and Model



5.8. Virginia

Virginia is representative of the top quartile of states by data quantity. So, by comparing Virginia to
Kentucky, we get a different story: an understanding of how more data influences the observed modeling
behaviors.

With a first glance at the AUC, it seems as though the problems with the random forests have been
alleviated (Figure 8). In fact, the random forests all seem to do incredibly well, regardless of data sampling.
A look at the modeling densities confirms that the models are learning to discriminate well and are using the
full output space to make predictions (Figure 9). A close inspection does show that there is still a small mode
for the imbalanced and oversampled models where observations on claim are predicted with probabilities near
0. It is not the case that the overfitting problem has been entirely removed by increasing the data quantity,
but it has been significantly reduced so as to be nearly negligible. The same is true for the overfitting of
the oversampled DNN, which is still present in the slightest way, but doesn’t retain practical importance.
Overall, overfitting is alleviated across the board by having more training data available. However, it is still
present enough to give the undersampled random forest the edge over the other models under consideration.
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Figure 8: ROC Curve of Virginia Models, Faceted by Sampling Method
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6. Conclusion

Long-term care insurance is an important and underutilized aspect of household asset protection. Im-
proved profitability would encourage more companies to enter the market, improving the product offerings
and prices for the consumers. This paper seeks to improve that profitability by improving the claim models
in LTCI. There is a large body of work modeling the disability process, but much less at the actual LTCI
policy-level.

We compared five different models (logistic regression, K-nearest neighbors, gradient-boosted forests,
random forests, and deep neural networks) and three different methods of training sampling (oversampling,
undersampling, and using the data as is). We found that the random forest outperformed all the other
methods. The deep neural networks were the next best, though this was subject to the quantity of avail-
able training data. As both K-nearest neighbors and deep neural networks display dramatic performance
improvements with more data, oversampling was preferred especially when the states were smaller. For the
other three models, sampling method did not have a consistent impact whether positive or negative.

We also provided an in-depth look at three states, Montana, Kentucky, and Virginia. We showed that in
states with a small amount of available data (Montana) and a medium amount (Kentucky) a random forest
seems to overfit in the imbalanced or oversampled settings. That problem nearly disappears in when a large
amount of data is available for training (Virginia).

Future work in LTCI-specific modeling could include further exploration of the other random aspects of
the policies, like lapse and termination rates. There are also many unsolved questions in product design with
the life and LTC combination products showing strong promise. There is further potential in improving the
models in this paper. For example this could be done by explicitly accounting for spatial and/or temporal
correlations or incorporating a hierarchical structure in the data.
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