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Abstract

The lifestyles and backgrounds of individuals across the United States differ widely. Some of these
differences are easily measurable (ethnicity, age, income, etc.) while others are not (stress levels, empathy,
diet, exercise, etc.). Though every person is unique, individuals living closer together likely have more
similar lifestyles than individuals living hundreds of miles apart. Because lifestyle and environmental factors
contribute to mortality, spatial correlation may be an important feature in mortality modeling. However,
many of the current mortality models fail to account for spatial relationships. This paper introduces spatio-
temporal trends into traditional mortality modeling using Bayesian hierarchical models with conditional
auto-regressive (CAR) priors. We show that these priors, commonly used for areal data, are appropriate
for modeling county-level spatial trends in mortality data covering the contiguous United States. We find
that mortality rates of neighboring counties are highly correlated. Additionally, we find that mortality
improvement or deterioration trends between neighboring counties are also highly correlated.

Keywords: mortality improvement, Bayesian modeling, spatial generalized linear model, conditional
auto-regressive priors

1. Introduction

There has long been significant interest in the modeling and projection of human mortality trends over
time. Prior to the last 30 years or so, this modeling was typically done in a deterministic manner, using meth-
ods like extrapolation, or fitting one-factor (age) or two-factor (age, year) models to historical trends. See
Dickson et al. (2020) for a development of these deterministic factor-based mortality improvement methods.

More recently, stochastic methods of modeling the changes in mortality have become the standard for
researchers and practitioners. Stochastic mortality models have several advantages over their deterministic
counterparts. First, the recognition that the processes underlying mortality rates are themselves stochastic
leads to the tendency of stochastic models to be inherently more realistic than deterministic ones (Cairns
et al., 2009). In addition, there are also practical reasons to favor stochastic models, one of the most
important being that they better allow us to assess uncertainty in our projections, whether this uncertainty
is due to model risk, parameter uncertainty, or the inherent randomness of the process.

One of the earlier stochastic mortality models, and certainly among the most widely used, was the Lee-
Carter model (Lee and Carter, 1992). While this model has some notable advantages such as simplicity and
interpretability of model parameters, it also suffers from several disadvantages including poor fits to some
data sets, a lack of smoothness across ages, and the fact that it ignores age-time interactions, thus preventing
the modeling of cohort effects commonly found in population mortality data sets.

Many researchers have offered variations on the Lee-Carter model that seek to address some of these
shortcomings; the Cairns-Blake-Dowd model (Cairns et al., 2006) and its extensions have been widely utilized
to model mortality improvements. For a discussion of the properties and a quantitative comparison of the
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Lee-Carter and Cairns-Blake-Dowd models and variants, the reader is referred to Cairns et al. (2009); Booth
and Tickle (2008) offers a broad review of mortality forecasting methodologies, including Lee-Carter and its
extensions, as well as older deterministic methods.

One potentially significant component missing from the above models is the recognition of potential spatial
(geographic) correlations within mortality data. It seems plausible that mortality trends in neighboring
locations might share more similar characteristics than those corresponding to well-separated locations, and
that incorporating a spatial component into our mortality model might help strengthen and improve our
understanding and projection of mortality trends. We might also desire our models to include the possibility
of space-time interactions.

Many researchers have indeed incorporated spatial and/or spatio-temporal effects into mortality mod-
els, with Bayesian and empirical Bayes approaches having become popular. Some early examples utilizing
empirical Bayes approaches to account for spatial effects include Clayton and Kaldor (1987) and Manton
et al. (1989); Bernardinelli and Montomoli (1992) reviews empirical Bayes and fully Bayesian approaches to
modeling spatial variations in mortality rates.

Waller et al. (1997) expanded existing spatial modeling by using a hierarchical Bayesian approach which
allowed for spatial and temporal effects, as well as spatio-temporal interactions; they applied their model to
county level lung cancer death rates in the state of Ohio. Xia and Carlin (1998) analyzed this same data
set, using similar methods and adding in the effects of covariates thought to be relevant, such as age and
smoking prevalence.

More recently, Ayele et al. (2015) used a structured additive logistic regression model to describe the
mortality rates for young children in Ethiopia. This study utilized a Gaussian Markov random field to
account for prior knowledge of spatial effects. Dwyer-Lindgren et al. (2016) used a Bayesian approach to
fit a hierarchical model which allowed for spatial effects between neighboring counties, with covariates also
being measured at the county level.

Alexander et al. (2017) used a Bayesian hierarchical model to obtain subnational mortality estimates, in
order to better understand intra-national health inequalities. They applied their model to simulated data
from the United States, as well as actual data from France, broken into 19 age groups. Their model used the
first three principal components from some set of standard mortality curves, with a random effect to account
for potential overdispersion. Their model achieved geographic pooling by using a common distribution
centered on the state or country means. This model also imposed smoothness across time by incorporating
information from the previous two time periods. They found that the resulting model fit better than simpler
models, particularly in areas with smaller populations; this was notable because small populations often lead
to higher variances in the respective mortality estimates.

We add spatio-temporal interactions directly into the mortality model using a conditional auto-regressive
(CAR) model (Besag et al., 1991). A CAR model is specifically designed for spatial data that is collected
into geographic regions, such as county data (Cressie, 2015) and has been extended to spatio-temporal data
through various means (Martínez-Beneito et al., 2008; Alegana et al., 2013). Temporal variations in mortality
will be accounted for using a spatially-varying linear time trend (Bernardinelli et al., 1995). The resulting
model will show both general mortality rates across the United States as well as region specific mortality
improvement over time.

The remainder of this paper is organized as follows: section 2 describes the mortality and covariate data
we use in our study; section 3 introduces the CAR model we use to describe the mortality data, including the
Bayesian priors and resulting posterior distributions; section 4 presents the results of the study and discusses
the major findings; section 5 concludes the paper with a discussion of the implications of the study and ideas
for further research.

2. Data

The data used in this analysis was sourced from the Division of Vital Statistics of the National Center for
Health Statistics (NCHS) which is a part of the Center for Disease Control and Prevention (CDC). The data
contain demographic and mortality information for each of the individuals who died in the United States
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between the years 2000 and 2017. For this analysis, we study the mortality rates by year, age, sex, and
county of residence.

The exposures for each demographic group are obtained through population estimates published by the
United States Census Bureau. The population estimates for 2000 and 2010 are the results of the decennial
census, while the estimates for intercensus years are based on information from both the decennial censuses
and the yearly American Community Survey. The census data bins ages into eighteen five-year age groups
starting with ages 0-4 and ending with ages 85+ as the 18th age group. We also bin our data according to
these age groups. Separate statistical models are fit for every age group and sex combination, for a total of
36 models.

The data underwent several modifications to make it suitable for spatio-temporal models. Some counties
in the data set had population estimates of zero for one or more age groups. Additionally, a small number
of low-population counties for a given age group had death totals that marginally exceeded exposure levels.
These counties were combined with the neighboring county with the largest population. By choosing the
neighboring county with the largest population we were able to maintain spatial relationships while mini-
mizing disruption to the empirical mortality rate. Note that in this paper we will use the term “county” to
refer to geographic subdivisions of a state, even in the state of Louisiana, which is divided into parishes.

During the course of the 18 years of study, some county names were changed and some boundaries were
adjusted. To maintain consistency, the data was adjusted to match the county names and boundaries in
2017. A full list of counties that were adjusted are in Appendix A. Neighboring counties were defined using
the County Adjacency File published by the United States Census Bureau. Observations for counties in
Alaska, Hawaii, and the U.S. territories were excluded from the analysis as their relative isolation makes it
difficult to establish spatial correlation.

After combining counties with extremely small populations, accounting for county changes, and removing
counties outside of the contiguous United States, our data contained a total of 3,092 counties for study. The
number of resident deaths in the continental U.S. between years 2000 and 2017 was 45,036,799.

Using the county-level population estimates, we calculated the empirical mortality rate for 55-59 year-old
females for each county in 2010, as shown in figure 1. The choropleth shows potential spatial correlation.
For example, mortality rates appear to be higher in the South and lower in the Midwest. Similar correlations
are visible for different age groups, years, and sex combinations. This supports our assertion that counties
that are close together likely have similar characteristics, and that this correlation should be accounted for
in a statistical model.

The spatial correlation that seems to be present in the majority of age groups tends to subside with
the oldest age group (85 years or older). Figure 2 shows a choropleth with the empirical mortality rates
for females 85 years or older in 2010. While some spatial correlation is still likely present, the choropleth
does show greater variation in mortality rates between neighboring counties than seen in the choropleths for
younger age groups.

Figure 3 displays the mortality trends over time for each age group and sex combination averaged over
every county. The plots show that in general, mortality rates have decreased over time. While it does appear
that there has been an increase in mortality for some of the lower age groups, it is important to keep in
mind that the scale represents very small changes in mortality, and the increases seen may be a result of
a leveling of the mortality rate, rather than an increasing trend. Regardless, the changes in mortality rate
over time make it important to include both temporal and spatial components in the models. Figure 3 also
shows that empirical death rate is higher for males than females for most age group and year combinations.
These differences contributed to the decision to build separate models for female and male mortality rates.

Several covariates such as unemployment rate, race, education, marital status, and income were considered
for inclusion in the model. Unfortunately, the availability of county-level data for each year is limited due
to privacy laws. We found that data that is only available, for example, on census years or at a state
level do not provide enough information to reasonably perform stable sampling from the posterior. The
only covariate for which we found reputable county-level estimates for each year from 2000 to 2017 was
unemployment rate, as provided by the U.S. Bureau of Labor Statistics. Therefore, for the models in this
paper we include unemployment rate as the only explanatory variable. In future research, we hope to obtain
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Figure 1: The county-level empirical mortality rates for females ages 55-59 in 2010. The mortality rates are multiplied by 1,000
for legibility.

Figure 2: The county-level empirical mortality rates for females ages 85 and older in 2010. The mortality rates are multiplied
by 1,000 for legibility.
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Figure 3: Average mortality rate by sex, age group, and year. The plots on the left show mortality rates for females while the
plots on the right show mortality rates for males. The upper plots show mortality rates for age groups 10-18 while the lower
plots show mortality rates for age groups 1-9. The plots are divided for legibility purposes.
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Figure 4: Unemployment rate by county in 2010.

yearly county-level data for other explanatory variables or make model-based adjustments in an effort to
accurately estimate them.

Though the unemployment data released by the U.S. Bureau of Labor Statistics are nearly complete,
unemployment rates were unavailable for seven counties in Louisiana in 2005 and 2006 (see Appendix B).
These counties correspond to the areas that were most severely impacted by Hurricane Katrina. While
unemployment rates were likely higher in these areas than in other parts of the state, due to the lack of data
we simply imputed the missing values using the average of the other Louisiana counties’ unemployment rates
in both years. Though the imputed values may not accurately reflect the true unemployment rates in these
areas, the small number of imputed values will not substantially affect the model fit.

The choropleth map in figure 4 shows the unemployment rates by county in 2010. This map shows
clear spatial correlation between areas. For example, there is high unemployment on the coasts, whereas
unemployment is lower in the center of the United States.

To explore potential trends in unemployment rate over time, we calculated the average county unem-
ployment rate weighted by county population. The results are seen in figure 5. The plot shows fluctuation
in the unemployment rate corresponding to periods of economic downturn and growth.

3. Methods

This section outlines the methodology for the CAR model that will be used to model the mortality data.

3.1. Bayesian Binomial Hierarchical Model
Let Y be the vector of data points where ykt represents the data at location k and time t. The data

is in terms of the number of deaths in each region and at each time point. The total population for
each region at each time is also known, so the most appropriate likelihood for this data set is binomial,
ykt ∼ Binomial(mkt, θkt), where mkt is the total population and θkt is the probability of death.

We achieve this likelihood through using a logistic link function on the probability of death,

log (θkt/(1− θkt)) = x′ktβ + ψkt. (1)
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Figure 5: Average county unemployment rate weighted by county population in the years 2000-2017.

The vector xkt represents covariate information for location k at time t and β contains the corresponding
coefficients. The term ψkt collects all the spatial and temporal random effects that create the spatio-temporal
dependence. This approach of separating fixed and random effects and using a link function to relate these
effects to the likelihood is common in spatial data analysis (Diggle et al., 1998; Cressie and Wikle, 2015) and
can be seen in Paciorek (2007) specifically using the binomial likelihood.

3.2. Conditional Auto-Regressive Priors
All spatio-temporal models assume that observations that are closer together in time and space are more

highly correlated than observations that are farther apart. The time component of the mortality data is
measured in years, which provides a straightforward way of defining distance. Counties, however, have odd
shapes and do not provide an intuitive distance measurement.

To model spatial dependence we use the concept of a neighborhood structure, where two counties that
share any portion of a border are considered first-order neighbors. An adjacency matrix W can be built
where Wij is 1 if locations i and j are neighbors and 0 otherwise.

Let φ = (φ1, ..., φn) be a spatially dependent random vector. A conditional auto-regressive (CAR) prior
is built on the idea that the expected value of the random effect at a specific location can be defined as a
linear combination of its neighbors, through the relationship

φi|φ(i) ∼ N

ρ n∑
j=1

1

Ni
Wijφj , τ

2


where φ(i) represents all locations excluding location i and Ni is the total number of neighbors for location
i. The degree of dependence between neighbors is captured by ρ, where a larger value signifies a stronger
dependence.

This structure results in an overall distribution for the random vector to be

φ ∼ N
(
0, τ2(D − ρW )−1

)
, (2)
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where D = diag(N1, ..., Nn) is a diagonal matrix collecting the number of neighbors for each location and 0
is a vector of 0’s.

3.3. CAR Linear Model
When discussing the model structure, we will focus on the random effects ψkt in Equation (1). The CAR

linear model structure is
ψkt = φk + (α+ δk)

t− t̄
T

. (3)

The term φk is given a CAR prior according to Equation (2) and represents a standard spatial random effect.
This model assumes a linear trend in the random effect over time with a slope equal to α+δk

T , suggesting
that the amount of mortality change over time is region-specific. The term δk is also given a CAR prior.

The neighborhood structures will be the same between the two spatial effects, but the variance τ2 and
dependence parameter ρ will be different, leading to specific priors of φ ∼ N

(
0, τ2s (D − ρsW )−1

)
and

δ ∼ N
(
0, τ2t (D − ρtW )−1

)
where φ = (φ1, ..., φn)′ and δ = (δ1, ..., δn)′. Both φ and δ will have constraints

that they must sum to 0. This will allow the intercept term in the fixed effects to represent the overall
average mortality (on the logistic scale) for all times and spatial locations. Also the term α will represent
the average slope for the linear mortality trend for all locations.

3.4. Posterior Simulation
Combining all the information introduced for the specific model components as well as the prior infor-

mation for all parameters, the full Bayesian CAR Spatio-temporal Model we are using is

ykt ∼ Binomial(mkt, θkt), k = 1, ..., n; t = 1, ..., T

log (θkt/(1− θkt)) = x′ktβ + ψkt

ψkt = φk + (α+ δk)
t− t̄
T

φ ∼ N
(
0, τ2s (D − ρsW )−1

)
δ ∼ N

(
0, τ2t (D − ρtW )−1

)
τ2t , τ

2
s ∼ IG(a, b), ρt, ρs ∼ Uniform(0, 1)

α ∼ N
(
µα, σ

2
α

)
, β ∼ N(µβ ,Σβ)

where IG refers to the Inverse Gamma distribution.
This full model description can define a likelihood that will be leveraged in simulating draws from the

posterior distribution of the parameters. For nearly all the parameters, posterior samples will be drawn
using Metropolis-Hastings with Gibbs sampling (Neal, 1993). The proposal distributions are all Gaussian
random walks with tuning parameters found such that all acceptance rates are between 40% and 50% for
the scalar parameters α, ρs, ρt and β and acceptance rates are between 20% and 40% for the vectors φ and
δ.

The only parameters that have closed form posterior distributions are the variance terms τ2s and τ2t . The
posterior distribution for τ2s and τ2t given the other parameters will be

τ2s |· ∼ IG (a+ 1/2, b+ φ′(D − ρsW )φ/2) ,

τ2t |· ∼ IG (a+ 1/2, b+ φ′(D − ρtW )φ/2) .

4. Results

The model in section 3.4 was fit using the mortality data described in section 2. With unemployment as
the only regressor, the fixed effects in the model are x′ktβ = β0 +β1Unempkt, where Unempkt represents the
unemployment in county k and time t. The priors for τ2t and τ2s were chosen to be relatively uninformative

8



Figure 6: Estimates and 95% credible intervals for β0 (intercept) by sex and age.

with a = 1 and b = 0.01. The prior for β was chosen so that µβ = 0 and Σβ = I. Additionally, the mean
and variance of the prior distribution for α are µα = 0 and σ2

α = 1000, respectively. The model was run
entirely using the CARBayesST package from the Comprehensive R Archive Network repository (Lee et al.,
2018). The computation uses R for the MCMC steps although computationally intensive components were
calculated using C++ via Rcpp (Eddelbuettel et al., 2011). An appropriate burn-in and overall convergence
was checked using Geweke test statistics (Geweke, 1992) as well as visual analysis of the trace plots. The
number of samples drawn from the posterior was enough to give a reasonably large effective sample size.

All the effects we discuss and explore visually will be done in the logit scale as values on the untransformed
scale are difficult to distinguish. Figure 6 shows the estimates and 95% credible intervals for the intercept,
β0, by age and sex. As the age categories are collected on intervals, the plots are simplified by using the
lowest value in each age range. In this plot, and all subsequent plots, it is important to remember that we
fit 36 models (one for each combination of age group and sex). These estimates are connected linearly for
visualization purposes only. The shape of the graph follows the general trend of mortality rates such that
mortality decreases after birth for a few years, and then continues to increase with age.

The estimates and credible intervals for the unemployment effect (β1) are shown in figure 7. The wide
credible intervals associated with the youngest age groups include zero, suggesting that there is little to no
effect of county unemployment rate on the mortality rate of newborns and young children. However, once
the children reach their teenage years, it appears that, for the most part, an increase in unemployment rates
leads to a decrease in mortality rates. While this result may seem counterintuitive, others have found a
similar phenomenon (Ionides et al., 2013). Note that our analysis studies mortality rates in aggregate, and
the effect of unemployment rate on mortality may not be the same at an individual level. The magnitude
of the unemployment rate effect is greater for young-adult males than young-adult females. However, the
difference between the sexes tends to subside in later years. Overall, the estimated effect magnitudes were
highest for young adults, while the effect of unemployment rate on mortality is minimal after retirement age.

Recall that the model in section 3.4 assumes a linear time trend such that the parameter α represents the
country-wide time trend and α+δk represents the time trend for county k. Figure 8 shows the estimates and
95% credible intervals for α by age and sex. For the youngest age groups, as well as the older age groups,
we see significant mortality improvement. This improvement is greater for the youngest age groups than the
oldest ones. For young and middle-aged adults, we see deterioration in mortality. This deterioration could
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Figure 7: Estimates and 95% credible intervals for β1 (effect of county-level unemployment rate on mortality) by sex and age.

be attributed to the “deaths of despair” that are commonly mentioned in recent literature (Scutchfield and
Keck, 2017). Males ages 40-50 did experience some modest mortality improvement, but their mortality rates
were already higher than the females of similar ages who experienced mortality deterioration.

To visualize the values α + δk we plot them on a map of the United States. Negative values indicate
mortality rates are decreasing which suggests mortality improvement over time while positive values indicate
that mortality rates are increasing. Figure 9 shows these county-level time trends for females ages 55-59.
The plot shows spatial correlation in time trends. For example, mortality rates seems to be increasing the
most in the south, whereas there is general mortality improvement in northeastern counties.

The magnitude of the spatial dependence in the time trend is governed by ρt. This implies that larger
values of ρt results in neighbors being more similar in terms of mortality improvement. Figure 10 shows that
ρt is close to one for most age groups, although it is much lower for children, teenagers, and individuals over
85 than it is for other age groups. The lower correlation may be visualized in figure 11, where the correlation
in the time trend between neighboring counties for females ages 15-19 is much less obvious than it is for
females ages 55-59 as seen in figure 9.

Similar trends were also seen in the spatial dependence parameter, ρs, that represents the magnitude of
the dependence in overall mortality between neighboring counties. The estimates and 95% credible intervals
for ρt are shown in figure 12. Here we see that the spatial correlation is very low for 20-24 year olds of both
sexes, as well as for individuals over 85. Notice, however, that the uncertainty in our estimates is much lower
for the spatial dependence parameters than the temporal dependence parameters.

5. Conclusion

By using conditional auto-regressive priors, we incorporated spatio-temporal random effects into a stochas-
tic mortality model. The large estimated spatial correlation values as well as the visual evidence support
that these spatially correlated effects were important to the model, both in terms of overall mortality as well
as mortality improvement. This borrowing of information across space and time improves model fit and will
lead to more accurate estimates of trends and covariate effects.

The model used in this paper can be extended in a number of ways. A non-linear mortality time trend
may be more appropriate, especially for a longer-term analysis. The incomplete covariate information can be
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Figure 8: Estimates and 95% credible intervals for α (country-wide time trend) by age and sex.

Figure 9: County-level time trends (α+ δk) for females ages 55-59.
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Figure 10: Temporal dependence parameter (ρt) estimates and 95% credible intervals by age and sex

Figure 11: County-level time trends (α+ δk) for females ages 15-19.
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Figure 12: Spatial dependence parameter (ρs) estimates and 95% credible intervals by age and sex.

included using geo-additive effects. Also, the age groups can be modeled together in a multivariate model.
These extensions and others will be considered in future work.
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Appendix A. County Adjustments

Table A.1 contains a list of county Federal Information Processing Standard (FIPS) codes that were
changed for the purpose of this analysis, as well as the reason for those changes.

Original FIPS Adjusted FIPS Reason for Adjustment
08079 08007 Low population
08111 08067 Low population
30055 30085 Low population
30069 30027 Low population
31009 31041 Low population
31075 31033 Low population
46017 46041 Low population
46113 46102 County name and FIPS were changed in 2015
48173 48329 Low population
48259 48275 Inconsistent data
48261 48215 Low population
48269 48275 Low population
48301 48389 Low population
48311 48013 Low population
48443 48465 Low population
49009 49047 Low population
51515 51019 County boundary was adjusted in 2013
51720 51195 Counties were combined

Table A.1: FIPS county adjustments

Appendix B. Unavailable Unemployment Data

The following is a list of FIPS codes for the seven Louisiana counties where unemployment rate data was
unavailable in the years 2005 and 2006: 22051, 22071, 22075, 22087, 22089, 22095, 22103.
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