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Abstract

It is often di�cult to know which models to use when setting rates for auto insurance. We develop a
market-based model selection procedure which incorporates the goals of the business. Additionally, it is
easier to interpret the results and better understand the models and data. As an application, we compare
many di�erent models (variants of GLMs, GLMMs, regularized regression, random forest, and spike and slab
models) on a robust dataset of 70,000 commercial auto policies. We �rst compare the models using standard
metrics (MAPE, MSPE, and runtime), leading to mixed results and interpretation. The market-based model
comparison method shows that the random forest model far outperforms the other models in terms of both
loss ratio and market share, likely compensating for the increased computational cost.

1. Introduction

In this paper, we propose a market-based model selection method which focuses on the goals of the
prediction exercise, to optimally price auto policies. To show the potential bene�ts of the method, we apply
it in a commercial auto insurance ratemaking exercise. We �t many di�erent predictive models to a robust
dataset of 70,000 commercial auto policies and compare the model performance.

The ratemaking literature is vast. When modeling pure premium in a property/casualty setting, there are
two main streams of research. One option is to model the pure premium directly. Observed pure premium
has many zeros for all the policies with no claims, but the positive values are relatively continuous. The
Tweedie distribution (Tweedie, 1984) is commonly chosen in this setting because (depending on a power
parameter between 1 and 2) it has a point mass at zero and continuous support over the positive reals.
Jørgensen and Paes De Souza (1994) �rst applied the Tweedie distribution as a GLM to insurance claim
data. The other option is to model the frequency (count of claims per policy) and severity (cost per claim)
separately and then combine them to get the total cost. Some more recent work (e.g. Shi et al., 2016) also
incorporates the type of claim (liability or physical damage, for example). We model the frequency, severity,
and the pure premium, but will focus on pure premium for our market-based method (it can be applied to
frequency and severity, but is most natural when comparing pure premium models).

After choosing how to model the total losses, we need to compare the di�erent available models. When
examining many potential ratemaking models, it can be di�cult to choose the best model. Some models are
more accurate by one measure, while other models are more accurate under a di�erent measure. Even if a
model is consistently more accurate, what if it is much more computationally intense, or if its optimization
more unstable? In this paper we propose a market-based model comparison technique which can give the
user a better understanding of the potential impact of di�erent ratemaking models on the company results.
We compare eight di�erent models of pure premium both using standard accuracy and complexity measures
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and using our market-based model comparison metric. The market-based metric provides a much clearer
picture of the di�erences between the models.

Many papers use likelihood-based methods like AIC or BIC to choose the best models (e.g. Bermúdez
and Karlis, 2011; Shi, 2016; Tang et al., 2014; Yip and Yau, 2005). Others use prediction error metrics like
mean squared or median absolute prediction error or the GINI index (e.g. Frees et al., 2014; Guelman, 2012).
Still others use both (e.g. Klein et al., 2014). Our market-based model selection method provides additional
information to help answer the questions of which model is best and how much better.

In the next section, we outline market-based model selection and the other comparable metrics. In section
3, we describe our data. In section 4, we outline the predictive models we will compare. In section 5, we
detail the results of our analysis. In section 6, we conclude and discuss limitations and next steps.

2. Market-based Model Selection Metric

The main contribution of this paper is a market-based model selection metric. Imagine that each of the
candidate models is an insurance provider. Each of the pure premium predictions becomes the price the
provider o�ers for each policy. The company with the lowest price earns the policy. We will then compare
market share and loss ratios for the providers to see which model best di�erentiates the good risks from the
poor ones. For example, if we are comparing �ve di�erent models and their (cross-validated) predictions for
a single observation (Table 1).

Model Predicted Pure Premium Actual Losses
Model 1 29 24
Model 2 27 24
Model 3 29 24
Model 4 31 24
Model 5 35 24

Table 1: Model selection example

Because model 2 has the lowest prediction, it will get to write the policy. It receives 27 in premium and
24 in losses. All of the rest of the models are una�ected. This does not depend on the actual earned premium
for this policy in our data. This process is repeated for all of the observations. Then, to compare the models
we compute the loss ratio (total losses/total earned premium) and the market share (policies written by the
model/total policies). This is also compared for each of the 100 iterations to understand the uncertainty.

In addition to the market-based model comparison, we compare the models using median absolute predic-
tion error (MAPE, the median of the absolute di�erences between the predicted and actual pure premium),
mean squared prediction error (MSPE, the mean of the squared di�erences), and runtime. All of the comput-
ing was performed on an Intel Xeon E5-2689 v4 (3.10GHz) with 192 GB of RAM and 40 available threads.
To get a better understanding of the prediction metrics, we ran the cross-validation 100 times. Intervals of
the middle 95 iterations are also displayed.

3. Commerical Ratemaking Data

Our dataset consists of bodily injury (BI) and property damage (PD) claims from 77,229 commercial
auto policyholders in California in 1999. We will use the following covariates to model frequency, severity,
and pure premium.

� Program (standard, substandard, assigned risk, direct excess, and motorcycle)

� Good driver discount (true/false)

� Limits (basic, greater than basic)
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� Coverage (bodily injury or property damage)

� Five policy level covariates (named Var1 through Var5, including some continuous and some categorical)

Some of the policy-level variables are included not because we think it is likely they will accurately predict
losses, but rather because we hope that it will be removed from the model (or its impact will be minimized)
by some of the methods we try below. In this paper we are mainly interested in di�erent model families
how to measure which perform best. Discussion of the chosen covariates (and their impact on losses) is
deliberately avoided to maintain that focus.

4. Predictive Models

As mentioned in the previous section, we will model frequency, severity, and pure premium. We chose
the models below after a review of the most common ratemaking models in the literature. We hope to focus
on the model comparison process and also make our models easily replicable by practitioners who would like
to apply our methods in their work. To that end, we will only use models which have a published R package.
The methods we use in this paper are detailed in the remainder of this subsection.

Basic GLMs. Generalized linear models are a natural starting point. They extend the linear model
when Gaussian additive errors don't make sense. Using the glm function in base R, we �t basic GLMs as
a benchmark for all of the loss metrics. For frequency, we use a Poisson GLM with exposure o�set. For
severity, we use a Gamma GLM. Finally, for pure premium, we use a Tweedie distribution with exposure
o�set. For more information about GLMs, please see Nelder and Wedderburn (1972).

Bayesian GLMs. While the glm function chooses the parameters with a likelihood-based optimization,
Bayesian GLMs use a prior distribution and then sample from the posterior distributions of the parameters
using MCMC. These models are ideal for incorporating expert information not included in the data and for
properly accounting for all types of uncertainty. In this application, we want a relatively fair comparison
between our Bayesian and Frequentist models, so we will use basic non-informative priors on all the param-
eters. Using the arm package, we will �t basic Bayesian GLMs for all of the loss metrics. Similar to the
basic GLMs, we use Poisson (with exposure o�set) for frequency, gamma for severity, and Tweedie for pure
premium (with exposure o�set). For more details, please see Dey et al. (2000).

GLMMs. Using the lme4 package, we �t generalized linear mixed models for all of the loss metrics. The
main reason to model a covariate as a random e�ect instead of a �xed e�ect is to take advantage of partial
pooling (Gelman and Hill, 2006). When you have a categorical variable where some levels have only a few
entries, a random e�ect will shrink that level's coe�cient estimate towards the estimates for the other levels.
As is the case in the GLM models, we use Poisson for frequency, gamma for severity, and Tweedie for pure
premium. We tried �rst to �t all the categorical variables (program, good driver discount, limits, coverage,
and city type) as �xed e�ects and all the continuous variables as random e�ects, but the likelihood function
became so �at that the model was unable to converge. We then simpli�ed the model to still include all of the
�xed e�ects, but only program as a random e�ect. This is important to note when reading the results section
as the model we use will �t slightly faster and may perform more poorly than the other models because of
the limited covariates. For more information on GLMMs, please see McCulloch and Searle (2004).

Regularization (LASSO, Elastic Net, and Ridge). Regularized methods aim to automatically �nd
the balance between overly complex and overly simple models. In all cases, LASSO (Tibshirani, 1996), elastic
net (Zou and Hastie, 2005), and ridge (Hoerl and Kennard, 1970), the models are penalized for having large
regression coe�cients. This makes the models as simple as they can be but no simpler. If there is a large
amount of signal for a large regression coe�cient, it will overwhelm the penalty term and be included in
the model. Elastic net and LASSO can also perform variable selection by penalizing the coe�cients of the
insigni�cant variables all the way to zero.

Using the glmnet package, we �t Poisson LASSO, elastic net, and ridge regression models on the frequency
data with an exposure o�set. To �t the severity and pure premium models (gamma and Tweedie with an
exposure o�set), we use the HDTweedie package. When testing and scrutinizing the HDTweedie package, we
found some concerning results. Setting the shrinkage parameter (λ) to 0 removes the regularization from
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the model making it a standard GLM. We set the power parameter to 1 (implying a Poisson distribution)
and compare the HDTweedie to glm and �nd that all the parameter estimates are equal. When we adjust
the power parameter, the estimates no longer match, though they should. We decided to still include these
results in the paper, but they should be taken with a grain of salt.

Spike and Slab. As an alternative to regularized regression to determine which variables are important,
we �t a Bayesian Spike and Slab model. A standard regression model depends on some function of

∑
kXikβk

for observation i. The spike and slab model (Kuo and Mallick, 1998) adds a binary variable to the kernel in
the previous sentence to get to

∑
k γkXikβk. When γk = 1 then Xk is included in the model, but Xk is left

out when γk = 0. This model provides a posterior probability that βk is signi�cantly di�erent from 0 (the
probability that γk = 1). In contrast to the other regularization methods above, the spike and slab model
does not shrink the variables which stay in the model much, but shrinks the others all the way to zero.

To �t the spike and slab model, we use the package SpikeSlabGAM. That package implements the Poisson
model, but not the gamma or Tweedie models. The boral package states that it implements Tweedie spike
and slab models, but we were unable to get reasonable results. Because of this, we decided to use the spike
and slab model only in the frequency predictions.

Random Forests. Random forest models are an ensemble of many relatively simple models on subsets
of the data. By combining the estimates from many simple models, we can get better results than those
from a single complicated model. Each of the individual models are regression trees (Breiman, 2017). Each
of the individual trees are built on a random sample of the observations and a random sample of the possible
covariates. We use the randomForest package to �t random forest models. For the frequency model we
include the exposure as a covariate. That is similar to including it as an o�set in a standard GLM, though
we are using more external information than in the GLM where the coe�cient is e�ectively constrained to
be one. The severity values are already per claim and do not need to be adjusted for exposure. In the
pure premium model, we �rst divide the total losses by the exposure and then model that (per exposure)
loss amount. When �tting a random forest model, several hyperparameters will need to be set. The main
hyperparameters are:

� Number of trees to grow: This is the number of simple models (trees) to �t. Because each model is �t
to a subset of the explanatory variables and a subset of the observations, a su�cient number of trees
need to be built. This is only really limited by your computational power. As we will show later in the
paper, random forest models can be computationally intense.

� Number of explanatory variables randomly sampled for each split in the tree: How many variables
should we use in each simple model. The default is one-third of the total number of variables.

� Sample size of each draw: Number of samples drawn for each tree.

� Minimum size of the terminal nodes: Making this value larger will cause smaller trees to be grown.
The default value is 5.

The rest of the settings we simply used the defaults. The four in the list we set through cross-validation as
described in the next section. For more details on random forests, please see Breiman (2001).

4.1. Model Fitting

In summary, we �t the following models.

Frequency Severity Pure Premium
Poisson GLM Gamma GLM Tweedie GLM
Bayesian Poisson GLM Bayesian Gamma GLM Bayesian Tweedie GLM
Poisson GLMM Gamma GLMM Tweedie GLMM
Poisson LASSO Gamma LASSO Tweedie LASSO
Poisson Ridge Gamma Ridge Tweedie Ridge
Poisson Elastic Net Gamma Elastic Net Tweedie Elastic Net
Poisson Spike and Slab (SaS) - -
Random Forest Random Forest Random Forest
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We �t all of the above models using ten-fold cross validation (we divide the dataset into ten parts and
hold-out one at a time while �tting the model on the other parts). For the models without hyperparameters
to speci�cally tune (GLMs, GLMMs, and spike and slab), we simply �t the models to 9/10 of the data and
then used that model to predict the held out tenth. For each set of predictions, we iterate over each tenth.
That way, all of the predictions are on out-of-sample data.

For the other models (LASSO, ridge, elastic net, and random forest) we used nested cross validation
where the bottom level determined the hyperparameter settings. Speci�cally, we used the 9/10 of the data
to �rst tune the hyperparameters (λ in the regularization methods and various hyperparameters for the
random forest model). We did that through 10-fold cross-validation on the 9/10 of the original dataset.
That way, we choose the hyperparameters that work best when holding out some data, and then use those
hyperparameters to �t the model on the entire 9/10. Finally, we use that �tted model to predict the values
for the held out tenth, data which the model has not seen yet. This method, while computationally expensive
(because of the nested cross-validations), allows us to use the entire dataset more fully and still maintain
proper holdout samples.

5. Results

5.1. Frequency

The frequency models produce the following results:

Runtime MAPE Con�dence MSPE Con�dence
(in mins) Interval Interval

Poisson GLM 0.26 (0.3179, 0.3194) (116.58, 117.28)
Bayesian Poisson GLM 0.64 (0.3179, 0.3196) (116.52, 117.26)
Poisson GLMM 4.11 (0.3349, 0.3362) (136.26, 136.66)
Poisson LASSO 1.13 (0.3222, 0.3235) (116.58, 117.32)
Poisson Ridge 0.55 (0.4906, 0.4919) (126.75, 127.52)
Poisson Elastic Net 1.16 (0.3221, 0.3236) (116.55, 117.29)
Poisson SaS 9.90 (0.7776, 0.7804) (383.11, 385.13)
Random Forest 1403.53 0.3655 88.05

The Poisson GLM was the most computationally e�cient model, followed closely by the ridge and
Bayesian models. The LASSO and elastic net were next, with the GLMM and SaS models a number of
times slower. The random forest model was orders of magnitude slower than the other models because of
the many individually optimized trees.

When predicting, we were only able to run the random forest model once because of the long runtime.
The simplest models (GLM and Bayes GLM) performed the best in terms of MAPE. The random forest
model did really well in terms of MSPE. After the random forest model, the GLM, Bayes GLM, LASSO
and elastic net all performed similarly. The GLMM did not do very well, but also did not use all of the
same covariates as the other models. MSPE adds more emphasis to single predictions with large errors,
in this case exceptionally large predicted (or actual) frequencies. It is interesting that the ridge regression
performed worse than the LASSO and elastic net in this situation. The random forest model may better
predict large values than the GLM. That is why the GLM has a consistently smaller MAPE, but a larger
MSPE. In choosing the best model for frequency on this data, it is di�cult to di�erentiate between the GLM
(whether Bayesian or not) and the random forest model.

5.2. Severity

The severity models produce the following metrics:
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Runtime MAPE Con�dence MSPE Con�dence
(in mins) Interval Interval (millions)

Gamma GLM 0.10 (1213.0, 1218.6) (130.12, 130.95)
Bayesian Gamma GLM 0.39 (1212.1, 1218.4) (130.23, 130.94)
Gamma GLMM 3.46 (1216.6, 1221.4) (130.57, 131.17)
Gamma LASSO 0.16 (3710.7, 3716.2) (148.75, 148.81)
Gamma Ridge 0.16 (3710.7, 3716.2) (148.75, 148.81)
Gamma Elastic Net 0.17 (3710.8, 3716.3) (148.75, 148.81)
Random Forest 253.14 1169.4 137.88

As in the frequency data, the simple models were very e�ective. Under MAPE, the random forest model
was optimal, but the GLM, Bayes GLM, and GLMM were next. The results are similar with MSPE, only
with the simpler models outperforming the random forest model.

The GLMM was slower than all the other models, except for the random forest model which again was
orders of magnitude slower than the other models.

Note that these results are similar to the frequency results, except that the random forest model outper-
formed in terms of MAPE here and was worse in MSPE. Again it is di�cult to choose a best model between
the GLMs and the random forest models.

5.3. Pure Premium

The pure premium models produce the following results.

Runtime MAPE Con�dence MSPE Con�dence
(in mins) Interval Interval

Tweedie GLM 0.87 (5.751, 5.793) (18100.47, 18102.30)
Bayesian Tweedie GLM 2.02 (5.756, 5.789) (18100.36, 18102.17)
Tweedie GLMM 8.31 (5.862, 5.902) (18100.26, 18101.49)
Tweedie LASSO 0.42 (9.279, 9.318) (18130.01, 18130.75)
Tweedie Ridge 0.45 (9.279, 9.317) (18130.01, 18130.75)
Tweedie Elastic Net 0.45 (9.279, 9.318) (18130.01, 18130.75)
Random Forest 1022.73 3.347 19224.24

Similar to the severity models, the random forest outperformed the rest of the models under MAPE,
but was much worse in terms of MSPE. This is likely due to the fact that it severely over-predicted (or
under-predicted) some of the policies. This is another potential bene�t of the market-based model selection
metric. In actual practice, under-predicting premium is much more detrimental than over-predicting. Also,
continuing the theme, the random forest model took much longer to �t than any of the other models.

5.4. Market-based Metric

Looking only at these metrics continues to o�er a di�cult decision, which model is the best? The GLMs
are the most computationally e�cient and perform the best under some of the metrics, but the random
forest model is best under other metrics. Is the increased computational complexity of the random forest
model worthwhile? Why is the performance so di�erent between frequency and severity? Does the dramatic
improvement in terms of MAPE cancel out the poor performance in terms of MSPE? The market model
comparison answers this very question by simulating that if we were to price with a simpler model, but our
competitor was to price with a random forest, what would happen to our market share or our loss ratio?
This can help us more concretely decide which model to choose and the value of a more complicated or
computationally intense method.

In our application, the simulation produced the following results:
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Loss Ratio Market Share
Tweedie GLM (1.034, 1.075) (0.058, 0.065)
Bayesian Tweedie GLM (1.040, 1.080) (0.051, 0.057)
Tweedie GLMM (1.057, 1.074) (0.085, 0.088)
Tweedie LASSO (1.367, 1.438) (0.048, 0.054)
Tweedie Ridge (1.282, 1.334) (0.097, 0.113)
Tweedie Elastic Net (1.321, 1.367) (0.147, 0.167)
Random Forest (0.947, 0.953) (0.484, 0.486)

The random forest model is the only one with a loss ratio less than 1.0 (implying more premiums than
losses) and obtains almost half of the market share. The simpler models were next best and the regularization
methods performed the worst. This shows that even though the random forest was the least accurate in
terms of pure premium MSPE, being most accurate in terms of MAPE lead it to being dominant in the
market simulation. One possible explanation is that MSPE excessively penalizes large misses. If the random
forest model severely over-predicted some of the policies, that would greatly impact MSPE but the impact on
MAPE would be muted. The model wouldn't win those policies, so the over-prediction would not adversely
impact the market simulation. These results show that the increased computational time to �t a random
forest is de�nitely worth the advantage gained in the market.

One other nice feature is the ability to look at the results and quickly interpret possible reasons. About
half of the market went to the random forest model and the other half went to the remaining models. What
if the other models simply split the rest of the policies? How would the random forest perform if compared
with just one of the other six models? What would happen if we allowed the models to contain interaction
or polynomial terms? What about an ensemble model of many of the models currently explored? All of
these questions and more can be answered by market-based model selection.

Seeing the loss ratio less than 1.0, a potential issue emerges. Because there is no accounting for pro�t or
expenses, is a loss ratio less than 1.0 actually desirable? If a model were perfect, its predicted pure premium
would always equal the actual losses. Therefore any of the policies that it earns would have a loss ratio of
exactly 1.0. Any loss ratio less than 1.0 would be due to over-prediction, less desirable than an accurate
prediction.

This turns out to be another scenario where the market-based model selection method aligns statistical
techniques with business realities. We can see that by looking at two separate scenarios.

1. Assume a perfect model exists. It would only write the policies where all other models over-predicted
the losses. All of the other models would only write policies where they under-predict losses making
their loss ratios greater than 1.0 and showing that the perfect model is the best.

2. In reality there are no perfect models. The best model is the one which makes the least costly mistakes.
Most common model selection procedures are symmetric, implying that over- and under-predictions
are equally penalized. In the market-based method (and in actual practice) an over-prediction simply
means that you likely won't write the policy (because the premium is so high), but an under-prediction
exposes you to severe risk because you are likely to write the policy and have more losses than premiums
if you do.

6. Conclusion and Future Research

When looking at standard metrics, it can be di�cult to determine which model is best. This is especially
true when the di�erent metrics provide con�icting information. The market-based model comparison method
can help an analyst to choose a model more closely based on the desired outcomes and results. It can provide
a better story for stakeholders to justify the capital expenditures to roll out a new model, or at least make
that decision more data-based. In our commercial auto dataset, it is di�cult to decide between GLMs and
a random forest when looking at standard model comparison metrics. The market-based model comparison
shows that the random forest model is dramatically superior to the other models in metrics that actually
a�ect insurance pro�ts (loss ratio and market share).
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There are a few shortcomings and cautions with the results in this paper. The most important issue has to
do with the amount of time necessary to �t a quality model in each of the model families. While the random
forest model can do much of its own tuning, variable selection, and even a little bit of feature engineering,
the other model families require a good bit of testing and adjustment to the variables in the model to get a
well-�tting model. Some (or even all) of the advantage of the random forest models may evaporate if certain
interaction terms or other covariates were added to the other models. Also, while the random forest model
won convincingly in our application, this was just one application. Care should be taken when using these
results in a similar situation. All of the methods in this paper are limited by the implementation in their
respective R packages. A di�erent implementation of some of the models could perform better. This is also
not an exhaustive list of possible models. Two-part models (where frequency and severity are each modeled
and then combined) are another great example of a possible model to consider. One other possibility is the
increased �exibility of the random forest models, especially when it comes to the relationships between the
covariates, helped the random forest to outperform the others. If that is true, some of the bene�ts of the
random forest can be muted by allowing more complicated (interactions, polynomials, etc.) model structures
in the GLMs. Additionally, legal and regulatory requirements can limit which ratemaking models are even
available to an insurer. Finally, losses in other lines of business can behave very di�erently than losses in
commercial auto. All of these factors should be taken into account when comparing your own set of models.

These models also didn't incorporate the number of exposures as a weight in the regression models, which
would properly account for the fact that an observation with 4 exposures is actually four observations with
identical characteristics. Essentially all of the models compared have a weight variable that can be set. The
notable exception is the random forest model. To incorporate exposures as a weight in that model, the
observations in the dataset would be expanded to multiple rows with identical characteristics. For example,
if an observation includes 6 exposures, it could be expanded to 6 rows each with a single exposure. This
could also work with decimal exposures (dividing a 2.3 exposure observation into 5 observations each with 0.5
exposures or 23 observations each with 0.1 exposures). The more precisely the observations are divided, the
larger the computational impact. Because this paper focused on comparative and predictive (not inferential)
results, the results are unchanged by this simpli�cation.

Additionally, it would be better if this metric were used over multiple years, allowing the di�erent
models to adjust their base rates and drop out of the market completely depending on their performance.
Unfortunately, we only have access to a single year of data in this project.

It would be bene�cial to continue to test the hypothesis that the random forest outperforms the other
models. This can be done with other datasets, other lines of business, more comparison models (e.g. two-
part models, ensembles of the current models, more complicated design matrices), and di�erent comparison
metrics (e.g. GINI, information criteria).
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