
Bayesian multivariate regime-switching models and the impact of correlation

structure misspecification in variable annuity pricing

Brian Hartmana, Chris Groendykeb, and David Englerc

aDepartment of Statistics, Brigham Young University, Provo, UT, USA; bDepartment of Mathematics,
Robert Morris University, Moon Township, PA, USA; cDepartment of Health Sciences Strategy,
University of Utah, Salt Lake City, UT, USA.

ARTICLE HISTORY

Compiled May 7, 2019

ABSTRACT
We develop Bayesian multivariate regime-switching models for correlated assets, comparing
three different ways to flexibly structure the correlation matrix. After developing the models,
we examine their relative characteristics and performance, first in a straightforward asset sim-
ulation example, and later applied to a variable annuity product with guarantees. We find that
the freedom allowed by the more flexible structures enables these models to more accurately
reflect the actual asset dependence structure. We also show that the correlation structures in-
ferred by most commonly used (and simplest) model will result in significantly larger estimates
of the cost of the annuity guarantees.
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1. Introduction

Accurate modeling of financial time series is essential in many areas. In addition to being crucial
for option pricing and risk management, it is important to employ a sound model for financial
time series when pricing or provisioning for investment guarantees such as those commonly
found in modern variable and equity-indexed annuities and universal life products. Properly
accounting for the uncertainty in the model and the dependence between observations can
make the difference between a valuable model and a misleading one. Regime-switching models
(Hamilton 1989, Hamilton and Susmel 1994) are an intuitive way to incorporate stochastic
volatility and jumps into the asset pricing model. Hardy (2001) introduced these models to
the actuarial literature and has since provided further model development (Hardy 2003). Hardy
demonstrated that the regime-switching lognormal model fit US and Canadian index data (S&P
500 and TSE 300, respectively) relatively well.

Hardy limited investigations of regime-switching models to only single asset streams. However,
when guarantees are based on multiple assets, simulating each individually may be inadequate,
as doing so ignores the correlation between assets and hence exposes the writer to pricing risk.
Boudreault and Panneton (2009) examined two families of multivariate models, namely regime-
switching and GARCH (Generalized Auto-Regressive Conditionally Heteroskedastic) models.
They found that whereas the multivariate GARCH models generally fit better throughout cen-
tral elements of the distribution, regime-switching models provided better fit in the tails. Since
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the majority of investment guarantees are written to protect against tail risk, further investiga-
tion of regime-switching models in multi-asset settings is warranted, paying particular attention
to the modeling of the covariance structure between assets. Previous work considering a multi-
ple asset framework when valuing guarantees embedded in variable annuity products includes
Ng and Li (2011), which used a regime-switching model and considered guarantees involving
multiple currencies; Ng and Li (2013), which presented models (including GARCH and regime-
switching lognormal models) for pricing and hedging GMMB (Guaranteed Minimum Maturity
Benefit) and GMDB (Guaranteed Minimum Death Benefit) guarantees under a two-asset frame-
work; and Da Fonseca and Ziveyi (2017), which considers the valuation of the same two types
of guarantees under two different payoff functions, using a stochastic mortality model.

When fitting regime-switching models, Boudreault and Panneton (2009) used maximum like-
lihood estimation and an unconstrained correlation matrix. Maximum likelihood is very quick
and stable when the model is relatively simple (e.g., a few regimes and one asset), but as the
model becomes more complicated, maximum likelihood estimation can become unstable. Max-
imum likelihood convergence is difficult to achieve with many parameters, especially when the
density is multimodal, and multimodality is indeed expected in regime-switching models (Jasra
et al. 2005). Additionally, the boundary constraints (non-negative-definiteness) of the covariance
matrix can make convergence challenging. Thus, we will focus on Bayesian estimation, allow-
ing for more stability and more flexibility in model specification. More importantly, Bayesian
estimation makes it easier to incorporate prior beliefs about both the size and structure of the
correlations, and allows for the quantification of parameter uncertainty in these regime-switching
models (Hardy 2002, Hartman and Groendyke 2013).

There have been several recent developments in the utilization of regime-switching models
to analyze various risks inherent to variable annuity and related products. For example, Gao
et al. (2015) used a regime-switching model guided by a discrete state, continuous-time Markov
process in order to allow to varying volatilities of interest and mortality rates in the pricing of a
guaranteed annuity option. Costabile (2017) uses a trinomial lattice within in a regime-switching
framework to find the fair price of a GMWB (Guaranteed Minimum Withdrawal Benefit) option
on a variable annuity product. Kolkiewicz and Lin (2017) uses a regime-switching model of asset
log-returns to evaluate the surrender risk of a ratchet equity-indexed annuity product.

Under a Bayesian framework, the constraint of positive definiteness restricts options for the
prior distribution of the covariance matrix. A variety of approaches have been proposed that
satisfy this constraint. A commonly used approach is that of Bernardo and Smith (1994), in
which a conjugate inverse-Wishart distribution is employed as the prior. One drawback to
this approach, however, is that because the degrees of freedom parameter is the only tuning
parameter, it can be difficult to effectively incorporate prior information. Daniels and Kass
(2001) alternatively proposed several flexible hierarchical priors. Additional prior distribution
proposals include a reference prior that incorporates the eigenvalues of the covariance matrix
(Yang and Berger 1994) and a log matrix prior (Leonard and Hsu 1992, Hsu et al. 2012). More
recently, Wang and Pillai (2013) proposed an approach employing a scale mixture of uniform
priors for the covariance matrix in high-dimensional spatial settings.

For flexibility and ease of interpretation, we adopt the separation strategy proposed by
Barnard et al. (2000) in which the covariance matrix Σ is rewritten as

Σ = SRS,

where S is a diagonal matrix containing the vector of element-wise standard deviations and R
is the correlation matrix. The approach allows for the incorporation of the positive definiteness
constraint (see Section 2.4). Importantly, this approach also allows for the direct modeling of
correlation structure, a primary objective in the joint modeling of multiple asset streams.

Following the approach of Liechty et al. (2004), we examined three different prior structures
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for the correlation matrix, R. First, we examined a common correlation model where each
element of the correlation matrix follows a single prior distribution. Second, we investigated a
grouped correlations model where correlations are allowed to cluster into similar groups, with
each group sharing a common prior distribution. Finally, we explored use of a grouped variables
model which allows the observed variables (i.e., asset streams) to cluster into various groups.
Under this model, correlations between asset streams in the same group share a common prior
distribution. Additionally, the prior distributions of correlations between asset streams not in
the same group depend on the specific group assignments.

Our contributions in this paper are three-fold. We develop new models incorporating both
regime-switching and prior structure in the correlation matrix. Second, by applying these models
to the stock returns of health insurance companies and banks we begin to compare the strengths
and short-comings of each of the models. Finally, and most importantly for actuarial practice,
we examine the impact of model choice on the pricing and reserving for products such as variable
annuities. We show that the model chosen can greatly affect the estimation of asset correlations,
leading to significant impacts on the pricing and provisioning for these types of products.

The remainder of this paper is organized as follows: Section 2 discusses the three models we use
to describe the correlation structure between the assets, Section 3 applies these models to data
from nine asset streams across two industry sectors, Section 4 gives the results of an application
of these models to a variable annuity product, and Section 5 provides some conclusions and
ideas for future work.

2. Model

When modeling the logarithmic returns of a single asset, the normal distribution is a natural first
choice because of its connection to geometric Brownian motion and the Black-Scholes-Merton
model. Assume the data set contains n periodic observations, indexed by i. Now generalizing
the model to C different assets across the same time period (i ∈ {1, . . . , n}), the multivariate
normal distribution is a sensible extension. Let yi denote a C × 1 vector of log returns for the
ith period; yi follows a multivariate normal distribution, the parameters of which depend on the
regime at period i, which is given by xi, with xi ∈ {1, . . . , P}:

yi|xi = p ∼ NC(µp,Σp).

(Note that xi will typically not be observed and hence must be inferred.) The regime-switching
process follows a discrete-time Markov chain. The transition probability vector for regime p is
πp, with individual elements πp,1, . . . , πp,P , and is assigned a Dirichlet prior. We define np as

the number of data points assigned to regime p, so that
∑P

p=1 np = n. As mentioned above,
the covariance matrix in a given regime can be decomposed into a diagonal matrix of standard
deviations, Sp, and a correlation matrix, Rp:

yi|xi = p ∼ NC(µp,SpRpSp),

yi =


yi1
yi2
...
yiC

 , Sp =


σp1 0 . . . 0

0 σp2
. . .

...
...

. . .
. . . 0

0 . . . 0 σpC

 , Rp =


rp11 rp12 . . . rp1C
rp21 rp22 . . . rp2C

...
...

. . .
...

rpC1 rpC2 . . . rpCC

 , µp =


µp1
µp2

...
µpC

 .
It is important to note that for the following models, direct sampling of rpab from a normal
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distribution (subject to the positive definiteness constraint) with mean µ (which is assigned
a normal prior) and variance σ2 (which is assigned an inverse gamma prior) results in some
complications. Namely, the full conditionals for both µ and σ2 will entail normalizing constants
that intractably involve µ and σ2. To resolve this complication we employed latent variables,
or shadow priors, δpab (for a < b in regime p), between the likelihood of rpab and the priors for
µ and σ2. This approach drastically reduces the computational burden while providing a good
approximation to the true normalizing constant. The variance of the shadow prior, ν2, serves
as a tuning parameter: smaller values result in a better approximation to the actual model,
whereas larger values improve the sampling of the posterior distribution. We experimented with
a range of values for this parameter and ultimately used ν2 = 0.01 for all cases. A full discussion
of the utility of shadow priors is provided by Liechty et al. (2004, 2009).

2.1. Common Correlation Model

Under the common correlation model, it is assumed that all correlations between asset streams
have a common distribution for a given regime. The mean, µp, and the variance elements, σ2pj ,
of the log returns are given multivariate normal and inverse-gamma priors, respectively. We also
define

ȳp =
1

np

 ∑
{xi=p}

yxi1 ,
∑
{xi=p}

yxi2 , · · · ,
∑
{xi=p}

yxiC

T

as the vector of mean log returns for the points assigned to regime p. Then for this common
correlation model, we have:

µp ∼ NC(0, τ2I),

σ2pj ∼ IG(ασ, βσ),

rpab ∼ N(δpab, ν
2), ν2 = 0.01,

δpab ∼ N(λp, γ
2
p),

λp ∼ N(µλ, σ
2
λ),

γ2p ∼ IG(αγ , βγ),

πp ∼ Dir(1, 1, . . . , 1),

Pr(xi = p) = 1/P.
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These definitions and priors result in the following full conditional distributions:

µp|· ∼ NC

[
(τ−2I + np(SpRpSp)

−1)−1(np(SpRpSp)
−1ȳp), (τ

−2I + np(SpRpSp)
−1)−1

]
,

σ2pj |· ∼ IG

(
ασ +

np
2
, βσ +

∑
{xi=p}(yxij − µpj)2

2

)
,

f(rpab|·) ∝ |Rp|−np/2 exp

−(rpab − δpab)2

2ν2
− 1

2

∑
{xi=p}

(yxi
− µp)

T (SpRpSp)
−1(yxi

− µp)

 ,

δpab|· ∼ N

(
λp/γ

2
p + rpab/ν

2

1/γ2p + 1/ν2
,

1

1/γ2p + 1/ν2

)
,

λp|· ∼ N

(
µλ/σ

2
λ +

∑C−1
a=1

∑C
b=a+1 δpab/γ

2
p

1/σ2λ + C(C − 1)/2γ2p
,

1

1/σ2λ + C(C − 1)/2γ2p

)
,

γ2p |· ∼ IG

(
αγ +

C(C − 1)

4
, βγ +

∑C−1
a=1

∑C
b=a+1(δpab − λp)2

2

)
,

Pr(xi = p|·) ∝ NC(µp,SpRpSp) · πxi−1,p · πp,xi+1
,

πp|· ∼ Dir(1 +mp1, 1 +mp2, . . . , 1 +mpC), where mjk =

n∑
i=1

1 {xi = j, xi+1 = k} .

2.2. Grouped Correlations Model

In some settings, there may be groups of correlation parameters that are similar to one another,
yet differ greatly from the correlation parameters outside their group. Under the grouped cor-
relations model, K clusters of correlations are posited. Elements yi, Sp, Rp, µp, πp, and σ2pj
are defined as above. In this model, however, correlations rpab are drawn from a mixture of K
normals. Also, for this model, θpab represents the number of the group to which the correlation
rpab belongs in regime p. Prior probability of membership in group k is assumed to be equal to
1/K for all k. Thus, for this model, we have:

rpab ∼ N(δpab, ν
2), ν2 = 0.01,

δpab|θpab = k ∼ N(λpk, γ
2
pk),

λpk ∼ N(µλ, σ
2
λ),

γ2pk ∼ IG(αγ , βγ),

Pr(θpab = k) = 1/K.

These definitions and priors result in the following full conditional distributions:
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f(rpab|·) ∝ |Rp|−np/2 exp

−(rpab − δpab)2

2ν2
− 1

2

∑
{xi=p}

(yxi
− µp)

T (SpRpSp)
−1(yxi

− µp)

 ,

δpab|θpab = k, · ∼ N

(
λpk/γ

2
pk + rpab/ν

2

1/γ2pk + 1/ν2
,

1

1/γ2pk + 1/ν2

)
,

λpk|· ∼ N

(
µλ/σ

2
λ +

∑C−1
a=1

∑C
b=a+1 1{θpab=k}δpab/γ

2
pk

1/σ2λ +
∑C−1

a=1

∑C
b=a+1 1{θpab=k}/γ

2
pk

,
1

1/σ2λ +
∑C−1

a=1

∑C
b=a+1 1{θpab=k}/γ

2
pk

)
,

γ2pk|· ∼ IG

(
αγ +

∑C−1
a=1

∑C
b=a+1 1{θpab=k}

2
, βγ +

∑C−1
a=1

∑C
b=a+1 1{θpab=k}(δpab − λpk)2

2

)
,

Pr(θpab = k|·) ∝ exp

{
−(δpab − λpk)2

2γ2pk

}
.

2.3. Grouped Variables Model

Rather than allowing the correlation values to cluster, it may be more natural to allow for
groupings between the actual variables. Within each asset group, correlations between variables
have a common prior distribution. Cross-group correlations are specified separately for each
pairwise group combination, where there are L defined groups. Let Cw denote the total number
of intra-group asset pairs, and Cv denote the total number of cross-group asset pairs, so that
Cw +Cv = C(C − 1)/2. For this model, θpi denotes the group number to which asset i belongs
in regime p. Prior probability of membership in group l is assumed to be equal to 1/L for all l.
Elements yi, Sp, Rp, µp, πp, and σ2pj are defined as in the previous models, so that we have:

rpab ∼ N(δpab, ν
2), ν2 = 0.01,

δpab ∼ N(λpgh, γ
2
pgh),

λpgh ∼ N(µλ, σ
2
λ) for g ≤ h,

γ2pgh ∼ IG(αγ , βγ) for g ≤ h,
Pr(θpi = l) = 1/L,

where g = min(θpa, θpb) and h = max(θpa, θpb).
These definitions and priors result in the following full conditional distributions:

f(rpab|·) ∝ |Rp|−np/2 exp

−(rpab − δpab)2

2ν2
− 1

2

∑
{xi=p}

(yxi
− µp)

T (SpRpSp)
−1(yxi

− µp)

 ,

δpab|{θpa, θpb} = {g, h}, · ∼ N

(
λpgh/γ

2
pgh + rpab/ν

2

1/γ2pgh + 1/ν2
,

1

1/γ2pgh + 1/ν2

)
,
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λpgh|· ∼ N


µλ/σ

2
λ +

C−1∑
a=1

C∑
b=a+1

1{{θa,θb}={g,h}}δpab/γ
2
pgh

1/σ2λ +

C−1∑
a=1

C∑
b=a+1

1{{θa,θb}={g,h}}/γ
2
pgh

,
1

1/σ2λ +

C−1∑
a=1

C∑
b=a+1

1{{θa,θb}={g,h}}/γ
2
pgh

 ,

γ2pgh|· ∼ IG

αγ +

C−1∑
a=1

C∑
b=a+1

1{{θpa,θpb}={g,h}}

2
, βγ +

C−1∑
a=1

C∑
b=a+1

1{{θa,θb}={g,h}}(δpab − λpgh)2

2

 ,

Pr(θpi = l|·) ∝ exp

−
i−1∑
j=1

(δpji − λpcd)2

2γ2pcd
−

C∑
j=i+1

(δpij − λpcd)2

2γ2pcd

 ,

where c = min(θpj , l) and d = max(θpj , l).

2.4. Gibbs Sampling

For most model elements, straightforward Gibbs or Metropolis-Hastings sampling is effective
and sufficient. With regard to sampling of the covariance elements, however, special care must
be taken to ensure the positive definiteness of Rp. A straightforward approach for such settings
is outlined by Barnard et al. (2000) and Ritter and Tanner (1992) in which candidate values are
drawn from a grid of values that preserve this condition (conditional on the other parameter
values). This griddy Gibbs approach was employed for sampling of covariance elements in the
current setting.

3. Stock Return Data Analysis

As a first example of our method in an actual setting, we fit the three models to weekly total
return data from nine companies across two sectors from February 2014 through May 2016
(Yahoo! Inc. 2017). We used data from four health insurers [United Healthcare (UNH), Aetna
(AET), Cigna (CI), and Humana (HUM)] and five banks [Bank of America (BAC), Key Bank
(KEY), Wells Fargo (WFC), Citigroup (C), JP Morgan (JPM)]. We chose weekly (as opposed
to daily) data to provide a sufficient number of observations over the two-year period. Previous
authors have shown that data that is more frequent than weekly is best fit by a regime-switching
model with many regimes; for example, see Hartman and Heaton (2011), which finds that 6-7
regimes provide the best fit for daily data. With weekly data, we fit a model with fewer regimes,
and which is consequently much easier to interpret. Additionally, most conditions, options, or
guarantees on variable annuities, including those we use in this paper as examples, trigger on a
monthly, quarterly, or annual basis. Having data measured more frequently would not change
the resulting payment patterns. For each model, the MCMC chain was run for 100,000 iterations,
discarding the first 10,000 as burn-in. Hyperparameter settings are available in Appendix A.

We experimented with fitting models containing P = 2, 3, and 4 regimes, but all of the results
we present here correspond to the models with 2 regimes, as our results indicated that additional
regimes were unnecessary for this data. We refer to the regime containing the greater number
of observations as the primary regime and the other regime as the secondary regime. We found
that when we added additional regimes to the model, the algorithm for partitioning the data
into regimes tended to place the same data points into the primary regime, while subdividing the
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secondary regime into two or more partitions. Furthermore, these new smaller secondary regimes
had very similar inferred parameter values (and hence similar interpretations) to one another,
implying that there was little or no additional benefit from their inclusion. As a result, we
believe that the models with two regimes were the best and most parsimonious representations
of the data. In later sections, we discuss the regime interpretation for these models.

For this data we were primarily interested in exploring the magnitude and structure of the
correlations of pairs of assets both within and between sectors, how the assets and correlations
are grouped by the models, and in particular how these results vary among the three models of
correlation structure.

We also explored the assignment of points to the different regimes. Often, when regime-
switching models with two regimes are applied to asset return streams, one regime has a high
mean and low standard deviation, representing a normal state of the economy, whereas the
other has a lower mean and higher standard deviation, representing a recession or turbulent
state (Hardy 2003, Hartman and Heaton 2011).

3.1. Common Correlation Model

Under the common correlation model (a special case of the grouped correlations and grouped
variables models with K = 1 or L = 1), in the primary regime we see that all the posterior
means of the correlation elements are between about 0.65 and 0.9, with the cross-sector cor-
relations being the smallest (see Figure 1). The common prior distribution acts to pull all of
the individual correlation elements together. There is a similar effect in the secondary regime,
but the magnitude of all the elements is much smaller. Neither regime shows strong patterns
of grouping by asset sector in the posterior distributions of the correlation elements. There are
fewer data in the secondary regime (only about 20%), allowing the prior to have more impact.
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Figure 1.: Posterior means of health and bank correlation parameters under the common cor-
relation model

When we examine the assignment of points to regimes, we notice significant differences in the
µ parameters between regimes; in the primary regime, the bank stocks all have positive mean
returns and the health insurance stocks all have a negative mean returns, while the opposite is
true in the secondary regime. Figure 2 shows the estimated means of the posterior distributions
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of the µp parameters for the nine asset streams for the common correlation model. Detailed
values and standard errors can be seen in Table 4 in the appendix. Thus, for this model, we can
see that there are clear differences between the behavior of the parameters in the two regimes,
especially for the mean parameters, and to a lesser extent for the correlation parameters; further,
there is evidence that the model has placed the data into the two regimes largely based on the
values of the mean returns for the asset streams.

UNH AET CI HUM BAC KEY WFC C JPM
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Common Correlations Model
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Grouped Correlations Model
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02

Figure 2.: Posterior means of µp parameters under the common correlation model (left) and the
grouped correlations model (right).

3.2. Grouped Correlations Model

The structure of the grouped correlations model allows the individual correlation elements to
cluster with other elements more freely. This allows us to test if the common correlation model
is too restrictive. We first set K, the number of correlation groups, to two.
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Figure 3.: Posterior means of bank and health correlation parameters under the under the
grouped correlations model with K = 2
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We immediately see strong evidence that the common correlation model is overly restrictive.
When the correlation elements are allowed to cluster more freely, in the primary regime all of
the within-sector correlations (both for banks and health insurers) cluster around 0.8, while
the cross-sector correlations are much smaller, around 0.4 (see Figure 3). We can see from
Figure 4 that the correlations cluster strongly into one cluster of within-sector correlations and
one cluster for cross-sector correlations. (We used a hierarchical clustering algorithm, using a
Euclidean distance metric and complete linkage method, (R Core Team 2016) to examine the
clustering pattern of these correlations.) There is little evidence of sub-clustering within either
of these two clusters. In the secondary regime, the correlation elements are generally much
weaker (most are close to zero), and exhibit much less pattern, with no apparent clustering by
sector.

When we increased the number of groups K to three, we observed a similar effect. For the
primary regime, the within-sector correlations are still larger than the cross-sector correlations.
The health and bank within-sector correlations stay relatively close to each other, even with the
added flexibility of a third group. Figure 5 again shows that the correlations cluster strongly into
one cluster of within-sector correlations and one cluster for cross-sector correlations. However,
unlike the K = 2 case, there is some evidence of intra-sector sub-clustering inside the within-
sector cluster. The within-bank correlations and within-health correlations tend to mostly form
their own sub-clusterings, though these groupings are not perfect. In the secondary regime, the
results are largely similar to the case where K = 2, though the magnitude of the correlation
elements is a bit greater than in this previous case. In this case, we also see little or no evidence
of clustering by sector in the secondary regime.
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Figure 4.: Dendrograms for bank and health correlations in the grouped correlations model
(K = 2). Blue labels correspond to intra-bank correlations, black labels correspond to intra-
health correlations, and red labels represent inter-sector correlations.

We can see from Figure 2 that for some assets, the means are greater in the primary regime,
while for others, the means have greater values in the secondary regime. This implies that a
high return / low return interpretation of the two regimes is unlikely to be applicable here. The
corresponding parameter means for the K = 3 case are not shown here; the results for these µp
parameters are very similar to the K = 2 case.

Indeed, upon closer inspection, it appears more likely that the points being assigned to the
secondary regime by this model were not distinguished by their means, but rather the degree to
which the assets within a sector moved or clustered with each other. To quantify this, we used
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Figure 5.: Dendrograms for bank and health correlations in the grouped correlations model
(K = 3). Blue labels correspond to intra-bank correlations, black labels correspond to intra-
health correlations, and red labels represent inter-sector correlations.

the intra-sector ranges to measure the return divergence at each time point. That is, for each
time point i, we have computed

∆yτi = max
(
∆yBi ,∆y

H
i

)
, where

∆yBi = max
j∈Bank

(yij)− min
j∈Bank

(yij) and ∆yHi = max
j∈Health

(yij)− min
j∈Health

(yij).

Figure 6 plots the maximum of the two intra-sector ranges (∆yτi ) for each point in the dataset.
We can see clearly that the assignment of points to the secondary regime corresponds very
strongly to the larger values of the intra-sector ranges.

3.3. Grouped Variables Model

In the grouped variables model, we allow the individual assets, as opposed to the correlation
elements, to cluster. We first set L, the number of asset groups, to two.

Examining the posterior means of the correlation (rpab) elements, we can see from Figure 7
that in the primary regime, the highest correlations belong to the intra-bank pairs of assets, fol-
lowed closely by the correlations corresponding to the intra-health sector, while the health/bank
cross-sector correlations are significantly smaller in magnitude. Not surprisingly, we can see that
the correlations are grouped strongly by sector, though not quite as strongly as in the grouped
correlations model. In the secondary regime, the correlation means are smaller in magnitude,
roughly centered around zero, and show no discernible pattern by asset category; these are very
similar to the results found for the grouped correlations model.

For this grouped variables model, it is also interesting to explore the clustering of assets, based
on the inferred clusters assigned by the algorithm. As with the grouped correlations model,
we used a hierarchical clustering algorithm, using a Euclidean distance metric and complete
linkage method to examine the clustering pattern of these assets. We can see from Figure 8
that in the primary regime, the assets are strongly clustered into their sectors, whereas in the
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Figure 6.: Maximum intra-sector ranges. Points most commonly assigned to the secondary
regime are marked by a red X.

secondary regime, there is little to no apparent clustering. All of these results reinforce the
findings above, namely that the assignment of points to regimes in this model is primarily
driven by the relationships between the assets, i.e., the correlation elements, rather than their
individual means or variances.

When we allowed for three groups in this model, the conclusions did not materially change.
The correlation posterior distributions look very similar to those produced in the previous case
with L = 2. That is, in the primary regime, the highest correlations belong to the intra-bank
pairs of assets, followed closely by the correlations corresponding to the intra-health sector,
while the health/bank cross-sector correlations are significantly smaller in magnitude; in the
secondary regime, the correlation densities are smaller in magnitude, roughly centered around
zero, and show no discernible pattern by asset category.

Regarding the assignment of data points to regimes, we found that the grouped variables
model, for both the cases of L = 2 and L = 3 groups, assigned points to the primary and
secondary regimes in a very similar manner to the grouped correlations model. As a result,
the resulting regimes have the same interpretations as they did under the grouped correlations
model, and most of the other model parameters such as the µp parameters were estimated
similarly to the corresponding parameters in the grouped correlations model.

4. Variable Annuity Application

Here we apply the three correlation models to a situation involving a variable annuity product
with a guarantee. We fit the models to monthly returns from some of the funds offered as
investment choices in a popular variable annuity product (Allianz 2018) from January 2005
through June 2017. Again, we used two regimes in all cases, and allowed for two, three, and
four groups in both the grouped correlations and grouped variables models. For each model,
the MCMC chain was run for 5,000,000 iterations (thinning every 100 iterations) with 50,000
burn-in iterations. We used the same values for all of the hyperparameters as were used in the
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Figure 7.: Posterior means of bank and health correlation parameters under the grouped vari-
ables model (L = 2).

previous analysis. The posterior samples produced for each model were used in the subsequent
inference and simulation described later in this section.

The variable annuity product considered here is a standard variable annuity design with a
guaranteed minimum income benefit. We assume that the policyholder makes a single deposit
of 10,000 at the onset of the contract. This money is invested in various investment funds, in
proportions chosen by the policyholder. After some time period, the policyholder can choose to
begin to receive benefit payments, payable for the remainder of their lifetime. For simplicity,
we assume that the benefit is taken in the form of a single life annuity, though typically other
payout options — such as single life with a period certain or joint and last survivor — would
often be available.

During the accumulation phase (i.e., prior to the first benefit payment), the nominal account
value grows with the performance of the underlying funds. The nineteen fund choices used
for this application are listed in the appendix. In general, the policyholder could allocate their
investment in any manner among these fund choices. For simplicity, we assumed that the invest-
ment was allocated equally among all nineteen funds; we also assumed a quarterly rebalancing
of the allocation. This hypothetical annuity product offers downside investment protection to
the policyholder in the form of a quarterly ratchet (or 0% quarterly roll-up): if the nominal
account value at the end of a quarter is less that its value at the end of the previous quarter,
the account value is reset to its previous quarterly value. The nominal account is charged an
expense charge to cover the product’s maintenance expenses and the cost of the guarantee; this
expense charge is 45 bp per quarter, or 190 bp annually, during the accumulation phase. We
assume no withdrawals or deaths during the accumulation phase.

The payout phase begins when the policyholder elects to begin to take annuity payments,
commonly at time of retirement. The amount of the annual benefit payment, payable for as
long as the annuitant is alive, is given in this case by:

BA = BR× I ×
QBR∏
i=1

max(1 + ri, 1)× (1−MEi), (1)
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Figure 8.: Dendrograms for bank and health assets under the grouped variables model (L = 2).

where BA is the annual benefit payment, I is the amount of the single deposit, BR is the benefit
rate (assumed to be 4% here), QBR is the number of quarterly time periods from the deposit
to retirement, MEi is the quarterly maintenance expense rate (0.0045 here), and ri represents
the quarterly asset portfolio return in period i.

In the remainder of this section we first describe the results of the inference for the model
parameters for this data under the three correlation models; we then perform a simulation
study where we use the inference results to simulate asset valuations for this product under
the guarantees described above for these models. Finally, we consider how the results change as
some of the underlying assumptions vary.

4.1. Inference Results

We consider here the inferred posterior distributions of the model parameters under the three
different models of correlation structure for these 19 assets. For the grouped correlations and
grouped variables models, we focus our attention on the case where we assume that the assets or
correlations cluster into two groups, that is, K = 2 or L = 2. Both the common correlation and
grouped correlations model typically assigned about 90-95% of the data to the primary regime,
whereas the grouped variables model usually assigned 60-70% of the points to the primary
regime. With respect to the µ and σ parameters, the grouped correlations model showed some
evidence of producing a primary regime with high mean / low variance and a secondary regime
with low mean / high variance; however, this pattern was not present in the other two correlation
models. The inferred overall mean log returns under the different regimes are shown in Table 1.

Table 1.: Overall mean log returns by model.

Model Primary Regime Mean Secondary Regime Mean
Common Correlation 0.0058 0.0074
Grouped Correlations 0.0073 -0.0286

Grouped Variables 0.0019 0.0105

Next we consider the correlation elements. As was the case in the previous example, we find
that the three models produced widely varying results in terms of the posterior distributions
of these correlation parameters. In the common correlation model, under each regime, the
correlation elements were all fairly similar in magnitude, i.e., all of the elements clustered in a
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relatively tight range, with little or no discernible structural patterns among assets or correlation
elements. In general, the correlation was significantly stronger in the primary regime than in
the secondary regime.

As was the case in the previous data set, we see here that the more complex correlation
structures allows more freedom for the correlation elements. The biggest difference in the results
of the grouped correlations model (as compared with the common correlation model) for this
data was that in the primary regime, there was a bigger spread in the mean values of the
correlation elements. In addition, the results showed evidence of significant clustering among
correlation elements in the primary regime.

By allowing the assets to cluster together, the grouped variables model shows the biggest
spread among correlation means in both the primary and secondary regimes. Like the grouped
correlations model, the primary regime showed evidence of clustering; however, unlike the
grouped correlations model, this clustering was also present in the secondary regime. These
results again indicate that the common correlation model is likely too restrictive, and the more
complex models are better able to describe the correlation structure in the data. Boxplots of
the means of the posterior distributions of the correlation elements are given in Figure 9.

Figure 9.: Boxplots of the means of the posterior distributions of inferred correlation elements
for primary and secondary regimes under the common correlation (CC), grouped correlation
(GC), and grouped variables (GV) models.
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Analyzing the results for the cases where 3 or 4 groups were allowed for the grouped correla-
tions and grouped variables models, the results did not change materially from the cases with
2 groups. There was little or no evidence that the models with more groups provided better fit
to the data or that a larger number of groups was needed for this data.
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4.2. Simulation Results

Here we discuss the results from a simulation study which uses the results of the preceding model
parameter inference to simulate the asset valuations of an insurer issuing the VA product. We
consider the results for the three correlation models as a function of the length of time after
retirement that the annuitant lives. In all cases, we assume that the accumulation phase lasts
for 25 years; we simulate a payout phase lasting up to 25 years. Again, we focus on the cases
with two groups (K = 2, L = 2), with the results being similar in the cases where we allowed
for 3 or 4 asset or correlation groupings. The hyperparameter settings are the same as those
used in the previous example (see appendix for more details).

We used the joint posterior parameter density from the previous section to simulate 50,000
series of quarterly asset portfolio returns. The estimated densities of these simulated returns
are shown in Figure 10. The common correlation model has the thickest tails overall because
of the high estimated correlations between the assets. The grouped correlations model is much
more left-skewed than the other two. This is because the grouped correlations model is assigning
regimes largely based on the return means, while the common correlation and grouped variables
models assigned regimes largely based on correlation differences. The grouped correlations model
is then able to have a low mean secondary regime, causing the left-skewness.

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0
2

4
6

8
10

Simulated Quarterly Returns

Figure 10.: Simulated quarterly returns for three different correlation models. The black curve
represents the common correlation model, the red curve represents the grouped correlations
model, and the green curve represents the grouped variables model.

Using Equation (1) and the simulated returns, we then examined the distributions of benefit
amounts generated by the three models. As we can see in Table 2, the three correlation models
produce significantly different simulated benefit amounts for our hypothetical variable annuity
product. Due to the quarterly 0% minimum return (rollup) feature, it is primarily the right tail of
returns that drives the patterns of benefit amounts. Thus, the common correlation model, which
has the thickest right tail, results in the largest benefit level; the grouped variables model, having
the thinnest right tail, produces the smallest benefit amounts, while the grouped correlations
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model falls in between. For the same reason, the common correlation model produces the largest
spread of benefit amounts, while the grouped variables model produces the smallest. Due to
the right tail of all three quarterly returns distributions, the resulting distribution of benefit
amounts is right-skewed for all three correlation models.

Table 2.: Simulated benefit amounts produced by hypothetical variable annuity product

Model Q1 Median Mean Q3
Common Correlation 711 1,030 1,264 1,531

Grouped Correlations (K = 2) 621 868 1,021 1,243
Grouped Variables (L = 2) 528 709 798 960

Using the simulated asset returns and benefit amounts, we next analyzed the accumulation of
insurer assets for this VA product, both in the accumulation and payout phases. Figure 11 shows
the simulated accumulation of assets through time for all three models. The grouped variables
model produces the largest median simulated asset values throughout the accumulation phase,
with the grouped correlations model producing the smallest asset values, and the common
correlation model falling in between. This is consistent with the asset returns simulated from
these models, with the grouped correlations model having a somewhat thicker left tail.

Once the annuity moves from the accumulation phase to the payout phase, the effect of the
larger simulated benefit amounts produced by the common correlation model begins to take
over, causing the asset accumulations simulated by this model to drop more rapidly than the
other models. Obviously, this effect continues to grow as the annuitant lives longer, i.e., more
payments are made from the insurer’s assets; in the event that the payout phase lasts longer than
roughly seven or eight years, the higher benefit amount produced by the common correlation
model causes the simulated asset amounts for this model to drop below those produced by the
grouped correlations model.

Of great importance to writers of such annuities will be the performance of the products and
associated guarantees in some of the more unfavorable scenarios. Table 3 gives the VaR (Value
at Risk) and CTE (Conditional Tail Expectation) for the worst 5% and 10% of simulated asset
accumulations at year 45 (i.e., after 20 years in the payout phase) under the three correlation
models. According to these metrics, the simulated results for the tail are worse for the common
correlation model than for either of the grouped models.

Table 3.: VaR and CTE for insurer asset accumulation amounts produced by simulated returns

Model 90% VaR CTE 90 95% VaR CTE 95
Common Correlation -41,992 -55,692 -50,760 -65,541

Grouped Correlations (K = 2) -37,867 -51,674 -46,859 -61,532
Grouped Variables (L = 2) -9,232 -14,417 -13,522 -17,496

We also examined the effects that varying the levels of some of the other assumptions and
product features had on the above simulation results. Within reasonable ranges, we found
that the results were not greatly impacted by different levels of the expense charge or minimum
quarterly guaranteed rate of return (rollup). Clearly, decreases in the expense charge or increases
in the minimum quarterly rate will both lead to greater benefit amounts, but these effects do
not change the relative results under the three models. Similarly, increasing the annual benefit
rate would cause the benefit amount to increase in all cases, and a corresponding decrease in
insurer assets.

The results of this section have demonstrated that for this variable annuity example, the three
correlation models produce significantly differing results. In particular, the common correlation
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Figure 11.: Simulated insurer asset accumulations through time. Solid lines show median values
for the correlation models, while dashed lines indicate the upper and lower quartiles. Black lines
represent the common correlation model, red lines represent the grouped correlations model,
and green lines represent the grouped variables model.

model results in parameter inference that yields conservative results, relative to the other two
models. Since it is likely that the actual correlation structure present in the data is more
complex than can be represented by the common correlation model, this simpler model will
serve to overprice investment guarantees such as the one seen in this example.

5. Conclusion

In this paper, we have explored the application of regime-switching models to modeling asset
return streams — and specifically the correlation between pairs of asset returns — using three
different correlation structures in a Bayesian framework. The common correlation model, the
grouped correlations model, and the grouped variables model offer varying levels of flexibility
and interpretability when modeling the correlations between asset streams. There are many
applications for which accurate modeling of these between-asset correlations is important, in-
cluding the pricing of investment guarantees; hence, this is a valuable area of exploration. We
found that in many circumstances, the added flexibility of the more complex structures was
indeed valuable and led to both better modeling of the correlations and valuable insights into
asset groupings.

In particular, when we applied these models to the asset returns of nine assets (comprised
of four health insurance stocks and five bank stocks), we found several interesting results.
First and most importantly, there was strong evidence that the common correlation model
was too restrictive and the added flexibility afforded by the grouped correlations and grouped
variables model appeared to be valuable in describing the correlation structure of these assets.
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Not surprisingly, the grouped correlations model appears to cluster the correlations according
to their actual sector groupings, while the grouped variables model was successful in clustering
the actual assets according to sector. It appeared that two groups were sufficient in both the
grouped correlations and grouped variables model; allowing the possibility of a third group did
not significantly improve the models.

We also found that the assignment of time points to regimes varied by model. For the common
correlation model, the regimes were marked by divergent mean asset returns by sector. However,
for the grouped correlations and grouped variables models, regime assignment was driven more
by the clustering structure of the assets than by the means or variances of the assets. In all
cases, this differs from many regime switching applications that have regimes which can be
interpreted as being a high-mean/low-variance regime and a low-mean/high-variance regime.

When applied to a generic variable annuity product with a guaranteed minimum income
benefit, we found that the three correlation models resulted in significantly different levels of
benefits and widely varying patterns of simulated asset accumulations for the insurer. These
differences were due to the variations in the distribution of simulated portfolio asset returns,
which themselves resulted from the discrepancies in the inference for the underlying param-
eter values, in particular, the correlation elements. The simpler correlation model lacked the
flexibility to allow the correlation elements to find their natural groupings; this rigidity led to
the appearance of more positively correlated assets, tending to produce thicker-tailed return
distributions. These differences are important to insurers, as they may drive the pricing and/or
reserving of such annuity guarantees.

There are many avenues for future work with regard to these models. First, we may consider
how these models perform under different types of asset return data. For example, it might be
interesting to consider how the models classify assets or market indices from different countries,
and which types of clustering and regime classification patterns are observed in these cases.
Another line of inquiry would be to further consider the impact of using overly simplistic
correlation models on the pricing and reserving of various types of investment guarantees offered
by insurers in products such as variable or equity-indexed annuities or variable universal life
products. While we have considered here a hypothetical annuity product with a relatively generic
GMIB (Guaranteed Minimum Income Benefit) rider, the volume and complexity of guarantees
offered in the marketplace is large and ever-expanding. A thorough exploration of the impact of
the differences of these correlation models on the pricing and reserving of such guarantees would
be of great benefit to researchers and practicing actuaries alike. Finally, it would be interesting
to explore whether the results we found regarding the assignment of points to regimes would
generalize to other situations involving the modeling of correlations between multiple assets and
to what extent the correlation structure would inform the interpretation of the regimes as it
has done here.

The presented model has been shown to work well in settings with moderate dimensionality.
If, however, joint modeling of a very high number of asset streams is of interest, investigation
of alternative covariance structures may be warranted. For example, implementation of an ap-
proach similar to Wang and Pillai (2013), an approach shown to be computationally efficient in
high-dimensional spatial settings, might be useful. However, it may be more difficult to impose
clustering structure under such an approach.
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Appendix A: Hyperparameter Settings

For both the health and bank simulation and the VA application, we used the following hyper-
parameter settings:

αγ = 20,

βγ = 1,

σ2λ = 1,

µλ = 0,

ασ = 50,

βσ = 0.05,

τ2 = 10,

ν2 = 0.0001.

In all cases the hyperparameters were chosen to be relatively non-informative where possible.
Some needed to be adjusted to improve convergence.
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Appendix B: Inference Details

This appendix gives the parameter estimates and their associated MCMC standard errors in
the common correlation and grouped correlations models for the health and bank data. The
standard errors (given in parentheses) are estimated using the batch means method (Jones et al.
2006, Haran and Hughes 2016).

Asset Common Correlation Model (K = 1) Grouped Correlations Model (K = 2)
Symbol Primary Regime Secondary Regime Primary Regime Secondary Regime
UNH -0.00771 (0.00007) 0.01338 (0.00053) -0.00444 (0.00002) -0.01919 (0.00013)
AET -0.00748 (0.00013) 0.02065 (0.00090) -0.00175 (0.00003) -0.05142 (0.00020)
CI -0.00681 (0.00012) 0.01371 (0.00081) -0.00183 (0.00003) -0.05549 (0.00019)

HUM -0.00772 (0.00015) 0.01913 (0.00100) -0.00245 (0.00003) -0.04417 (0.00021)
BAC 0.00703 (0.00025) -0.04039 (0.00137) 0.00129 (0.00003) 0.00192 (0.00015)
KEY 0.00470 (0.00020) -0.03080 (0.00112) -0.00062 (0.00003) 0.02340 (0.00014)
WFC 0.00179 (0.00013) -0.02105 (0.00067) -0.00103 (0.00003) 0.00120 (0.00012)

C 0.00601 (0.00021) -0.03522 (0.00118) 0.00113 (0.00003) 0.00166 (0.00018)
JPM 0.00256 (0.00017) -0.02718 (0.00089) -0.00079 (0.00003) -0.00485 (0.00016)

Table 4.: Posterior means for µp parameters in primary and secondary regimes (K = 1, K = 2)
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Appendix C: Fund Information

This appendix lists the investment options used for our variable annuity analysis; these invest-
ment options were taken from the Allianz Vision Variable Annuity product.

Symbol Company Category
DGAGX Dreyfus Large Blend
FSICX Fidelity Multisector Bond

MDDVX BlackRock Large Value
MDLOX BlackRock World Allocation
MMUFX MFS Utilities
MRBFX MFS Intermediate-Term Bond
MWTRX Metropolitan West Intermediate-Term Bond
OIGAX Oppenheimer Foreign Large Growth
PAAIX PIMCO Tactical Allocation
PCRIX PIMCO Commodities Broad Basket
PEBIX PIMCO Emerging Markets Bond
PGBIX PIMCO World Bond
PGOVX PIMCO Long Government
PHIYX PIMCO High Yield Bond
PIGLX PIMCO World Bond
PISIX PIMCO Foreign Large Blend

PRRIX PIMCO Inflation-Protected Bond
PTLDX PIMCO Short-Term Bond
PTTRX PIMCO Intermediate-Term Bond

Table 5.: List of investment options used in the variable annuity product example. Company
and investment categories for each fund are also shown.
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