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Abstract

As investment guarantees become increasingly complex, realistic simulation of
the price becomes more critical. Currently, regime-switching models are com-
monly used to simulate asset returns. Under a regime switching model, simulat-
ing random asset streams involves three steps: (i) estimate the model parameters
given the number of regimes using maximum likelihood, (ii) choose the number
of regimes using a model selection criteria, and (iii) simulate the streams using
the optimal number of regimes and parameter values. This method, however,
does not properly incorporate regime or parameter uncertainty into the gener-
ated asset streams and therefore into the price of the guarantee. To remedy
this, this article adopts a Bayesian approach to properly account for those two
sources of uncertainty and improve pricing.
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1. Introduction

In pricing increasingly complex insurance guarantees, closed-form analyti-
cal solutions are either difficult or impossible to find. Monte Carlo simulation
methods enable the individual pieces of the guarantee (asset prices, mortality,
interest rates, etc.) to be simulated. Using these simulations, the price of the
guarantee can be calculated. However, price calculations are only as accurate as
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the models and algorithms which generate the individual pieces. In this paper,
we will focus on simulating the asset price.

When deciding on a model for the asset price, a standard starting point
is geometric Brownian motion with a constant variance. Geometric Brownian
motion, however, is often too simplistic for asset prices. For instance, Bakshi
et al. (1997) show that incorporating stochastic volatility and jumps is impor-
tant for pricing and internal consistency. Regime-switching models are a simple
and intuitive way to enable stochastic volatility. Regime-switching models in
economic series were first introduced by Hamilton (1989) and further analyzed
in Hamilton and Susmel (1994). These models gained prominence in the actu-
arial literature when Hardy (2001) compared many different models and found
that the two regime lognormal model maximized the Schwarz-Bayes Criterion
(Schwarz, 1978) for monthly S&P 500 total return data and monthly TSE 300
total return data (On May 1, 2002 Standard and Poor’s began managing the
TSE 300 and changed the name to S&P/TSX Composite Index. To prevent
confusion, we will refer to the index as TSX for the remainder of the paper).
According to the Akaike Information Criterion (Akaike, 1974), the two regime
model was found to be optimal in the TSX data, but the three regime model
performed the best on the S&P data. Hardy (2003) notes that this shows that
model selection is not often clear cut and, while the results should inform the
decision, there is room for judgement as well.

The primary contribution of this paper is to present a Bayesian method
to quantify the uncertainty associated with the number of regimes in regime-
switching (RS) models. While we focus on the regime-switching lognormal
(RSLN) model, the methods described herein can be easily adapted to other RS
models. Hardy (2002) offered a first look at how to estimate the RSLN model
in a Bayesian framework using the Metropolis-Hastings algorithm. Specifically,
Hardy (2002) analyzed the effect of parameter uncertainty on equity-linked in-
surance contracts. We build on that work by incorporating regime uncertainty.
Additionally, we propose methods to incorporate parameter uncertainty which
achieve superior mixing properties and flexibility in the specification of the prior
distributions.

By operating in a Bayesian framework, we are also able to obtain posterior
probabilities for each model. A manager can use those probabilities to make an
informed decision on which model to use. Furthermore, the probabilities allow
for model averaging when producing the simulated asset streams. For example,
if the posterior probabilities were 0.05, 0.80, and 0.15 for one, two, and three
regimes, respectively, to make 100 simulated streams incorporating the model
uncertainty 5, 80, and 15 streams would be generated from the one, two, and
three regime models, respectively.

By accounting for both the uncertainty in the parameters and model specifi-
cation, we are able to more clearly understand the asset distribution, especially
the tails of this distribution. We find that properly incorporating parameter
uncertainty has a large effect on the asset distribution while incorporating the
regime uncertainty has a smaller, yet significant, effect. Additionally, our re-
sults indicate a more definitive decision rule between a two- and three-regime
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model for monthly S&P return data. We find that a large number of regimes is
required to properly fit daily data. Finally, our methods allow us to thoroughly
investigate moments of the asset distribution for each individual time period
and compare them to generally accepted economic events (National Bureau of
Economic Research, 2010).

The rest of the paper is organized as follows. Section 2 describes the RSLN
model. Section 3 describes two methods for when the number of regimes is
assumed fixed and known. Section 4 relaxes that assumption and estimates
both the number of regimes and the model parameters. In section 5, we describe
a simulation study which illustrates the advantages of our method. Section 6
describes the effect of the method on a few total return series from the S&P 500
and TSX. Finally, some conclusions are available in section 7.

2. Regime-switching lognormal (RSLN) model

In a Markov regime-switching model with R regimes, the current regime,
xt ∈ {1, . . . , R}, only depends upon the previous regime, xt−1. This is known
as the Markov property. Additionally, the regime is often unobservable. These
models are also known as hidden Markov models (HMMs). The observation, yt,
depends only upon the current regime, xt (Figure 1).

Figure 1: Graphical representation of a regime-switching model

There are three main parameters of interest in an RSLN model with R
regimes. µ = (µ1, . . . , µR), the vector of means (one for each regime), σ2 =
(σ2

1 , . . . , σ
2
R), the vector of variances, and θ, an R by R matrix where θij is the

probability of moving from regime i to regime j. To enable efficient estimation,
we augment the data by explicitly estimating the regime (xi) for each observa-
tion. For ease of notation and computation, we exponentiate all the observations
so the model is now a regime-switching normal model. The estimation of the
posterior distributions of the µ, σ2, and θ parameters are relatively straightfor-
ward because given the xi vector, the transformed data values are independent
and normally distributed with the following density function

p(yi|µr, σ
2
r , xi = r) =

1√
2πσ2

r

exp

{
− (yi − µr)

2

2σ2
r

}
. (1)
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3. Fixed number of regimes

We first assume that the number of regimes is known a priori. While this is
not very likely in practice, we are able to investigate the benefit of accounting
for only the parameter uncertainty.

3.1. Regime-specific parameters

Because the observations are independent and normally distributed, a nat-
ural choice for the prior distributions of µ and σ2 is normal-gamma.

p(µ,σ2) =

R∏
r=1

N(µr|µ0, σ
2
r/n0)Ga(1/σ2

r |α0, β0). (2)

Alternatively, to assist in the analysis of the posterior simulations, we can con-
strain the µ vector to be ordered.

p(µ,σ2) ∝
R∏

r=1

N(µr|µ0, σ
2
r/n0)Ga(1/σ2

r |α0, β0)1µ1<µ2<...<µR
(3)

Constraining the µ vector to be ordered will prevent label switching. If ex-
changeable prior distributions are placed on the parameters, the posterior dis-
tribution will be invariant to permutations in the labeling of the parameters
(Jasra et al., 2005). Each row of the transition matrix is given a Dirichlet prior.

p(θr) = Dir(1, 1, . . . , 1) ∀ r ∈ {1, 2, . . . , R} (4)

Finally, the prior on the state vector (xi) will give equal weight to each state.
Given the state vector, the full conditional posterior distributions for µ, σ2,

and θ are tractable.

p(µr|θ,x,y) = St
(
µpost, (nr + n0)(α0 + nr/2)β

−1
post, 2α0 + nr

)
(5)

µpost = (n0 + nr)
−1(n0µ0 +

∑
(yi1xi=r)) (6)

βpost = β0 +
∑

i:xi=r

(yi − ȳr)
2/2 + (n0 + nr)

−1n0Nr(µ0 − ȳr)
2/2 (7)

p(1/σ2
r |θ,x,y) = Ga(α0 + nr/2, βpost) (8)

p(θr|µ,σ2,x,y) = Dir(1 + nr1, 1 + nr2, . . . , 1 + nrR) (9)

3.2. State vectors

There are two main methods for estimating the state vector (xi) given the
other parameters. They could be generated one observation at a time or all at
once. Estimating the states simultaneously should allow the chain to mix more
quickly requiring fewer iterations, but each iteration is more computationally
intense.
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3.2.1. Single-site updating

When estimating each observation individually, the full conditional posterior
distribution of each state value is

p(xi|µ,σ2,θ,y1:n,x1:i−1,xi+1:n) (10)

which reduces through the Markov property to

p(xi|µ,σ2,θ, yi, xi−1, xi+1) ∝ p(xi)q(xi−1, xi)q(xi, xi+1)p(xi|yi) (11)

where when i = 1, q(x0, x1) is replaced by ν(x1), the unconditional probability
of regime x1, and when i = n, q(xn, xn+1) is replaced by 1. For each iteration
of the sampler, a state value is drawn for each observation, either in sequence
or a random order.

3.2.2. Forward filtering, backward sampling

Alternatively, the entire state vector can be simultaneously updated through
a forward filtering, backward sampling algorithm (Rabiner, 1989).
Step 1: Forward Filtering

ϕ1|0(j) = ν(j) ∀ j ∈ {1, . . . , R} (12)

For i ∈ {1, . . . , n}

ci =
R∑

r=1

ϕi|i−1(r)p(xi = r|yi) (13)

ϕi(j) =
ϕi|i−1(j)p(xi = j|yi)

ci
∀ j ∈ {1, . . . , R} (14)

ϕi+1|i(j) =

R∑
r=1

ϕi(r)qrj ∀ j ∈ {1, . . . , R} (15)

Step 2: Backward Sampling After the ϕi values are generated, the states are
drawn with the following probabilities:

p(Xn = x) = ϕn(x) (16)

For i ∈ {n− 1, . . . , 1}

p(Xi = x|Xi+1 = y) =
ϕn(x)qxy∑R
r=1 ϕn(r)qry

(17)

4. Dynamic number of regimes

While performing the estimation with a fixed number of states allows for
easier implementation and possibly more coherent estimation of the model pa-
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rameters, the uncertainty about the true number of regimes is not included.

4.1. Reversible jump MCMC

Generalization of Markov chain Monte Carlo methods to parameter vectors
of varying dimension was introduced through reversible jump MCMC (Green,
1995). Robert et al. (2000) applied the RJMCMC method to regime switching
models, but was only able to allow the variances to vary, the means were forced
to be set at 0. One large difficulty with the implementation of RJMCMC is the
specification of the proposal distribution. To our knowledge, there is not yet an
effective way to specify that distribution for general regime-switching models.

4.2. Dirichlet process

Dynamic estimation of the number of states in an HMM has received at-
tention in the machine learning literature. One stream of work is based on the
Dirichlet process.

The existence of a Dirichlet process was established by Ferguson (1973). As-
sume (Θ,B) is a measurable space with probability measure G0 and α0 is a pos-
itive real number. A Dirichlet process DP (α0, G0) is defined to be the distribu-
tion of a random probability measure G over (Θ,B) such that, for any finite mea-
surable partition (A1, A2, . . . , Ar) of Θ, the random vector (G(A1), . . . , G(Ar))
is distributed as a finite-dimensional Dirichlet distribution with parameters
(α0G0(A1), . . . , α0G0(Ar)). If G is a random probability measure with dis-
tribution given by the Dirichlet process it is written as G ∼ DP (α0, G0).

One perspective on the Dirichlet process provided by the Pólya urn scheme
(Blackwell and MacQueen, 1973) showed that draws from the Dirichlet process
are discrete and exhibit a clustering property. This perspective led to another
similar metaphor called the Chinese restaurant process (Aldous, 1985).

Imagine a Chinese restaurant with an infinite number of tables (clusters or
states) and the capacity to make an infinite number of distinct dishes (parameter
values). Customers (data points) enter one at a time. The first customer sits at
the first table. Subsequent customers will join an already-occupied table i with
probability proportional to ni, the number of customers sitting at table i. They
could also sit at an empty table with probability proportional to α0. All of the
customers at a single table must eat the same meal (have the same parameter
value).

After all the customers have entered the restaurant, they will each, in turn,
be removed from their seat and reseated according to the probabilities above
(proportional to ni for an occupied table and proportional to α0 for an unoccu-
pied table). Also, the meals will be updated taking into account the preferences
of the customers sitting at the table.

4.3. Infinite hidden Markov model

Beal et al. (2002) were the first to use the Dirichlet process in an HMM
framework through an Infinite HMM (iHMM). At any given iteration of their
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sampler, let {1, . . . , R} be the current number of states occupied. The states
are drawn from the following probability:

P (xt+1 = j|xt = r, β) =
nrj∑R

j′=1 nrj′ + β
r ∈ {1, . . . , R}. (18)

Notice that the probabilities do not sum to one. With probability

β∑R
j′=1 nij′ + β

(19)

an oracle state is chosen which has the ability to visit any state (not just those
which have been visited from the current state before) or generate an entirely
new state.

While this method is very intuitive, posterior inference is rather awkward
and in the paper only a heuristic approximation to a Gibbs sampler is proposed.

4.4. HDP-HMM

Teh et al. (2006) defined a hierarchical Dirichlet process which is analo-
gous to a Chinese restaurant franchise. The franchise has an infinite number
of restaurants, each with an infinite number of tables, and a global menu to
choose from. The first person sits at a table and chooses the meal. Having mul-
tiple restaurants allows the probability that a certain table/meal is chosen to
vary depending on the restaurant. In a regime-switching context, observation i
chooses a table. Observation i+1 will enter the restaurant with the same index
as the table chosen by observation i. The options available to observation i+ 1
and their associated probabilities are dependent upon the choices of observation
i (the Markov property). This implies a doubly infinite transition matrix where
each row is a restaurant. They named the method the hierarchical Dirichlet
process hidden Markov model, or HDP-HMM.

4.5. Sticky HDP-HMM

Many regime-switching models fit to real asset data, including those in Hardy
(2001) and Hardy (2003), exhibit state persistence. In the HDP-HMM all moves
are equally likely a priori. This can discourage parsimony. Fox et al. (2007)
overcame this problem by explicitly specifying a parameter which defines the
increase in prior probability for a self-transition over any other state. They
named their method the sticky HDP-HMM.

This can be thought of as a Chinese restaurant franchise with loyal cus-
tomers. The restaurant with the same index as a dish makes it best. When an
observation enters a restaurant, the namesake dish is more popular there than
anywhere else.

This also creates family loyalty. If a grandparent selects dish i, then the
parent will go into restaurant i making it more likely that he will also try dish
i. The details of the sampling algorithm are as follows with δ(j, k) denoting the
number of transitions from j to k and fr(yi) = N(yi|µr, σ

2
r):
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Given the previous state assignments x
(n−1)
1:I , global transition distribution

β(n−1), and hyperparameters α and κ:

1. Set x1:I = x
(n−1)
1:I and β = β(n−1). For each i ∈ {1, . . . , I}, sequentially

(a) Decrement nxi−1xt
and nxixi+1

and remove yi from the cached statis-

tics (mean µ̂r, variance σ̂2
r , and sample size νr) for the current as-

signment xi = r.
(b) For each of the R currently instantiated states where xi−1 ̸= r, de-

termine

fr(yi) = (αβr + nxi−1r)(
αβxi+1 + nrxi+1 + κδ(r, xi+1)

α+ nr· + κ

)
tνr (yi; µ̂r, σ̂

2
r) (20)

For xi−1 = r

fr(yi) = (αβr + n−t
rr + κδ(r, r))(

αβr + n−i
rr + κδ(r, yxi+1) + δ(r, r)δ(r, yxi+1)

α+ n−i
r· + κ+ δ(r, r)

)
tνr (yi; µ̂r, σ̂

2
r) (21)

Also, for a new state R+ 1

fR+1(yi) =
α2βr̄βxi+1

α+ κ
tνR+1

(yr; µ̂R+1, σ̂
2
R+1) (22)

(c) Sample the new state assignment xi:

xi ∼
R∑

r=1

fr(yi)δ(xi, r) + fR+1(yi)δ(xi, R+ 1) (23)

If xi = R+ 1, then increment R and transform β as follows. Sample
b ∼ Beta(1, γ) and assign βR+1 ← bβr̄ and βr̄ ← (1 − b)βr̄, where
βr̄ =

∑∞
r=R+1 βr.

(d) Increment nxi−1xi and nxixi+1 and add yi to the cached statistics (µ̂r,
σ̂2
r , and νr) for the new assignment xi = r.

2. Fix x
(n)
1:I = x1:I . If there exists a j such that nj· = 0 and n·j = 0, remove

j and decrement R.

3. Sample auxiliary variables m, w, and m̄ as follows:

(a) For each (j, k) ∈ {1, . . . , R}2, set mjk = 0 and n = 0. For each
customer in restaurant j eating dish k, that is for i = 1, . . . , njk,
sample

x ∼ Ber

(
αβk + κδ(j, k)

n+ αβk + κδ(j, k)

)
(24)

Increment n, and if x = 1 increment mjk.

8



(b) For each j ∈ {1, . . . , R}, sample the number of override variables in
restaurant j:

wj· ∼ Binomial

(
mjj ,

ρ

ρ+ βj(1− ρ)

)
, (25)

set the number of informative tables in restaurant j considering dish
r to:

m̄jr =

{
mjr, j ̸= r;

mjj − wj·, j = r.
(26)

4. Sample the global transition distribution from

β(n) ∼ Dir(m̄·1, . . . , m̄·R, γ) (27)

5. Simulation study

To exemplify the effect of properly accounting for the parameter and regime
uncertainty, we performed a simulation study. We generated 100 datasets of
1,000 observations from each of six RSLN models drawn from the actuarial
literature. The parameters are specified in table 1. The densities for each case
are plotted in figure 2. Each case is described below.

1. Fitted values for the optimal model (RSLN-2) for the TSX data in Hardy
(2001)

2. Similar to case 1, but with no Markov dependence

3. Similar to case 1, but the two regimes have equal mean

4. Similar to case 1, but with twice the difference between the means

5. Similar to case 1, but with only one regime

6. Similar to case 1, but with a rare, high expected value regime added,
making three total regimes

While there is some more information in the actual dataset (the order of the
observations helps to inform the estimation) it appears from the plots of the
densities that it will be very difficult to determine that more than one regime
exists. There is some skewness and kurtosis, especially in cases 2 and 4, which
may help. The posterior probabilities (estimated using the sticky HDP-HMM
methodology) of each model is in Table 2.

In all cases, the posterior probability for the one-regime model is largest.
Even so, there is still a large probability for the two regime model and non-
negligible probabilities for three, four, and five regimes. As we would expect
case 5, which actually has only one regime, has the highest probability for the
one regime model. Case 4, which has the largest difference between the two
regime means, has the highest probability for the remaining models. Notice
also that the probabilities for case 6 are very similar to case 1. While case 6
does have a third regime, its stationary probability is only 0.01, having very
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Figure 2: Simulation densities
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Table 1: Parameters for simulated datasets

Regime 1 Regime 2 Regime 3
Case (µi, σi) (µi, σi) (µi, σi) Transition Matrix

1 (0.012,0.035) (-0.016,0.078) -

(
0.963 0.037
0.210 0.790

)
2 (0.012,0.035) (-0.016,0.078) -

(
0.500 0.500
0.500 0.500

)
3 (0.000,0.035) (0.000,0.078) -

(
0.963 0.037
0.210 0.790

)
4 (0.025,0.035) (-0.031,0.078) -

(
0.963 0.037
0.210 0.790

)
5 (0.014,0.050) - - -

6 (0.012,0.035) (-0.016,0.078) (0.040,0.010)

0.953 0.037 0.010
0.210 0.780 0.010
0.800 0.190 0.010



Table 2: Posterior probabilities for the number of regimes

Case
Number of Regimes

1 2 3 4 5 6 7
1 0.647 0.214 0.088 0.034 0.013 0.004 0.001
2 0.789 0.157 0.038 0.011 0.003 0.001 0
3 0.629 0.221 0.098 0.036 0.012 0.003 0.001
4 0.518 0.289 0.122 0.047 0.017 0.005 0.001
5 0.864 0.109 0.02 0.004 0.002 0 0
6 0.641 0.203 0.094 0.039 0.014 0.005 0.002

little effect on the overall distribution. Overall, there is a lot of uncertainty
about the number of regimes to use when fitting this data.

For each of the simulated datasets, the model is fit using maximum likelihood
(Method A), the single-site updating scheme of section 3 to incorporate the pa-
rameter uncertainty (Method B), and the sticky HDP-HMM method of section
4 to incorporate both the parameter and regime uncertainty (Method C). The
results are then used to price a two European put options of various maturity
lengths. Figure 3 shows the median price and 95% pointwise credible intervals
for the price of an at-the-money put option (S0 = K = 1). Figure 4 shows the
same results for a put option which is deep in-the-money (S0 = 1;K = 10).
Method A is plotted with the dotted lines, method B with the dashed lines, and
method C with the solid lines.

A few facts are readily apparent from figures 3 and 4. The largest discrepancy
between the methodologies comes in the credible intervals. Method C provides
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Figure 3: Median price and 95% pointwise credible intervals for at-the-money
(S0 = K = 1) put option prices
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Figure 4: Median price and 95% pointwise credible intervals for deep-in-the-
money (S0 = 1;K = 10) put option prices
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the widest intervals followed closely by Method B. It is interesting to note that
the difference when accounting for parameter uncertainty is added (Method A
to Method B) is much larger than the difference when the regime uncertainty is
added (Method B to Method C). In all cases, the medians for methods B and
C are very similar to each other and far from the median for method A.

6. Real data examples

In this section we describe the results of applying the sticky HDP-HMM to
four datasets; monthly data from January 1956 through October 2010 (657 total
observations) and daily data from 02 January 1981 through 12 November 2010
(7,526 total observations) for both the S&P 500 and the TSX. We obtained the
data by comparing multiple sources (Standard and Poor’s, 2010; Yahoo! Inc.,
2010; Datastream International, 2010; Shiller, 2005).

6.1. Number of regimes

For each dataset, the sticky HDP-HMM methodology was run with 5,000
burn-in iterations and then the posterior distributions were estimated from 5,000
samples. The posterior probabilities for the order of the model are presented in
table 3.

Table 3: Posterior probabilities for the number of regimes

Frequency Index
Number of Regimes

1 2 3 4 5 6 7 8

Monthly
S&P 500 - - 0.56 0.31 0.11 0.02 - -
TSX - 0.63 0.29 0.08 0.01 - - -

Daily
S&P 500 - - - - - 0.38 0.57 0.05
TSX - - - - - 0.32 0.63 0.05

The two-regime model was selected for the monthly data of the TSX. That
matches what was found in Hardy (2001). Even so, the probability of the two-
regime model being the best is only 0.627 meaning there is still quite a bit of
model uncertainty. For the monthly S&P 500 data, the three-regime model
has the highest posterior probability. This also matches the AIC-based results
of Hardy (2001). It is very interesting that the most recent recession did not
necessitate more regimes. The two-regime model’s probability is near zero.
This is a much more definitive statement than can be made by likelihood-based
approaches.

Far more complicated models were selected for the daily data. For both the
S&P 500 and the TSX data, the seven-regime model was chosen as optimal.
The six-regime model also has a large posterior probability.
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6.2. Parameters of highest posterior probability model

For all of the draws in the model with the highest posterior probability, we
have organized the estimated parameter values. To prevent label switching, we
have multiple options. We could sort each set of regimes by their posterior
means. The regime with the smallest posterior mean is regime 1, the next
smallest is regime 2, and so on. Figure 5 presents kernel density estimates of
the posterior distributions of the regime parameters.

Figure 5: S&P 500 monthly parameter posterior distributions ordered by the
regime means
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Regimes 2 and 3 appear to have very similar posterior distributions. The
distributions for the mean are highly peaked and very close to each other, while
the distributions for the standard deviations are bimodal. The bimodality leads
us to believe that it may be better to sort these regimes by their standard devi-
ations. Figure 6 shows the kernel density estimates with the adjusted ordering.

Now the mean distributions for regimes 2 and 3 overlap but they are uni-
modal and the distributions for the standard deviations are no longer bimodal.
We think this more accurately portrays the results. This shows the dependence
of summary results on seemingly small assumptions. Care should be taken
when reporting or using the summaries. Table 4 presents the regime parameter
estimates with the labels sorted by the standard deviations.

Table 4: Parameter Estimates for S&P 500 monthly data

Regime µi σi Transtion Matrix
1 -0.0264 0.0683

0.876 0.112 0.013
0.020 0.963 0.017
0.002 0.032 0.957

2 0.0114 0.0412
3 0.0116 0.0239

All of the regimes show strong state persistence (witnessed by the diagonal
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Figure 6: S&P 500 monthly parameter posterior distributions ordered by the
regime standard deviations
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elements of the transition matrix being close to one). There is one regime with a
low expected value and high standard deviation and two regimes with positive
expected values and lower standard deviations. If the series is currently in
regime 1 and it moves to another regime, it will change to regime 2, 90% of the
time. From regime 2, it is equally likely to move to either 1 or 3. From regime
3, it will move to regime 2, 94% of the time. That implies that there is some
warning before a crash.

The parameter estimates for the monthly TSX data are presented in table
5.

Table 5: Parameter estimates for TSX monthly data

Regime µi σi Transtion Matrix
1 -0.0181 0.0916

(
0.849 0.151
0.033 0.967

)
2 0.0124 0.0346

The parameter estimates for the TSX monthly data are very similar to the
results in Hardy (2001) and Hardy (2002). There is one regime with a high mean
and low standard deviation and another with a low mean and high standard
deviation. Our estimated state persistence for the low mean regime is slightly
higher than what is found in those papers (0.849 to 0.7899 or 0.7942). The
parameter estimates for the daily datasets are presented in tables 6 and 7.

For both of the daily datasets, there is still strong state persistence. The S&P
500 estimates of all the self-transition probabilities are greater than 0.87. And
removing the two regimes with the lowest expected value, all of the probabilities
are above 0.96. The TSX data also have lower self-transition probabilities for
the extreme states. It is also interesting to note that when the chain is in either
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Table 6: Parameter estimates for S&P 500 daily data

Regime µi σi Transtion Matrix
1 -0.0134 0.0423



0.871 0.006 0.018 0.029 0.037 0.023 0.017
0.001 0.872 0.007 0.026 0.053 0.025 0.016
0.002 0.002 0.963 0.010 0.008 0.008 0.008
0.002 0.004 0.005 0.973 0.004 0.005 0.006
0.002 0.007 0.004 0.003 0.978 0.004 0.003
0.002 0.007 0.005 0.004 0.003 0.978 0.002
0.001 0.006 0.006 0.006 0.003 0.002 0.976


2 -0.0034 0.0196
3 -0.0008 0.0174
4 0.0001 0.0132
5 0.0006 0.0083
6 0.0008 0.0079
7 0.0014 0.0113

Table 7: Parameter estimates for TSX daily data

Regime µi σi Transtion Matrix
1 -0.0092 0.0299



0.671 0.009 0.018 0.055 0.047 0.031 0.169
0.008 0.678 0.011 0.048 0.047 0.035 0.173
0.010 0.013 0.875 0.009 0.013 0.038 0.042
0.018 0.032 0.008 0.858 0.002 0.009 0.074
0.013 0.028 0.009 0.002 0.888 0.009 0.052
0.005 0.011 0.028 0.011 0.007 0.936 0.003
0.002 0.004 0.042 0.196 0.114 0.002 0.641


2 -0.0054 0.0166
3 -0.0019 0.0149
4 -0.0003 0.0092
5 0.0003 0.0116
6 0.0016 0.0082
7 0.0052 0.0050
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of the two lowest regimes and it switches to another regime, it is very likely that
it will jump to the highest regime. From there it will likely move to one of the
two middle regimes whose expected values are closest to zero.

6.3. Analysis of observations

In addition to increased insights into the parameter estimates, our method-
ology allows for individual observation analysis. For example, we can calculate
the probability that the expected return at any given time period is positive
(somewhat the probability of a bull market). That probability for the monthly
data is plotted in figure 7. The solid line is the S&P data and the dashed line
is the TSX data.

Figure 7: Probability the expected return is positive

By looking at the months when the probability of a positive mean is less than
0.5, we can find an alternate way to define recessions. Our results are similar to
the generally accepted results (National Bureau of Economic Research, 2010).
Table 8 outlines those periods for each dataset (Gable, 1959; Labonte, 2002;
Hansen, 1960; Knoop, 2004). The month numbers which correspond to figure 7
are in parentheses.

There are three different periods where the TSX probabilities dropped below
0.5 and the S&P probabilities did not. The length of all the periods seem to be
very similar between markets.

In addition to the probability that the expected value is positive, we can
find estimates of both the expected value and the standard deviation for each
observation (figure 8).

As expected, the expected value decreases and the standard deviation in-
creases during the recessionary periods. The expected value of the TSX is gen-
erally higher (68% of the observations) especially during the really good times.
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Figure 8: Parameter estimates by observation
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Table 8: Periods with high probabilities of negative expected values

TSX S&P 500 Notes

07/57-11/57 -

04/62 03/62-05/62

06/69-07/69
- Quebec Crisis

04/70-05/70

10/73-01/75 11/73-12/74 OPEC raised oil price

08/79-03/80
- Iran Revolution

07/81-10/82

09/87-11/87 09/87-11/87 ”Black Monday” crash

06/98-10/98 08/98

07/00-08/01 11/00-10/01 Tech bubble burst,
05/02-08/02 02/02-10/02 September 11th attacks

06/08-03/09 05/08-03/09 Subprime mortgage crisis

When the mean of the S&P is above 0.01, the TSX is higher 73% of the time.
There are a few times when the mean of the TSX drops and the mean of the
S&P remains high which correspond to the drops in the posterior probability
presented in table 8.

7. Conclusion

When generating asset streams to use in pricing a complicated guarantee, it
is essential that the variability in the model be properly accounted for. We dis-
cussed two methods in this paper. One accounts for the parameter uncertainty
and the other accounts for both parameter and regime uncertainty. In our sim-
ulation study we showed that accounting for the uncertainty has a large effect
on the price of simple put options, especially in the tails. The vast majority
of the difference was attributed to the parameter uncertainty, but the regime
uncertainty still had a significant effect.

We also confirmed some results in the current literature about the optimal
number of regimes in monthly S&P and TSX data. The daily data required
many more regimes. A seven-regime RSLN model is very difficult to fit using
maximum likelihood. By using our algorithms, we are able to fit complicated
RSLN models effectively.

For all of the real data, there is a large amount of model uncertainty. If
that uncertainty is not accounted for in the model, prices on guarantees will be
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incorrect and the company will be exposed to more risk than assumed.
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