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Abstract

Using the Health Care Cost Institute data (approximately 47M members over 7 years), we examine how to
best predict which members will be high-cost next year. We �nd that cost history, age, and prescription
drug coverage all predict high costs, with cost history being by far the most predictive. We also compare the
predictive accuracy of logistic regression to extreme gradient boosting and �nd that the added �exibility of
the extreme gradient boosting (xgboost) improves the predictive power. Finally, we show that with extremely
unbalanced classes (because high-cost members are so rare) oversampling the minority class provides a better
xgboost predictive model than undersampling the majority class or using the training data as is. Logistic
regression performance seems una�ected by the method of sampling.

1. Introduction

A small proportion of members are responsible for a large majority of the total healthcare costs. While
most people use very few services, mainly preventive care or minor acute care, and others are regular
consumers, but at a moderate cost, nearly 75% of all healthcare expenditures are made by only 17% of users
(McWilliams and Schwartz, 2017). This high-cost care can be attributed to four main groups.

1. Completely unexpected - burns or serious car accidents or the transition of a normally mild disease
into a crisis due to an unexpected and unavoidable situation, such as the development of encephalitis
from a case of West Nile Virus.

2. Lack of due care and caution, as well as some terrible luck, for example septicemia.
3. Expected but not necessarily predictable, like cancer care.
4. Chronic disease that has worsened in severity, so that she is �ghting for her life after years of debility.

Due to the contribution to costs of this small segment of the population, there is considerable interest
to understand what portion of it can be predicted. The portion that is entirely random, and rare, may be
estimated by a distribution based on large population studies. It is the portion that could be estimated
using a predictive model based on the characteristics of the population that is of great interest because it
would allow for some predictions in future costs of a speci�c population, as well as identifying people for
interventions and additional care. While risk adjustment models are good at predicting average costs of care
for a category of people, they are still not e�ective at identifying particular people who may be at risk for
very high claim costs in the near future (Hileman et al., 2016; Hileman and Steele, 2016).

This research explores the types of models that will identify individuals who are most likely to exceed a
high cost threshold based on a number of characteristics available in the most common information source:
administrative claims data. While additional information from chart review and clinical recommendations
would be helpful to identify members at risk, this data is often di�cult to incorporate into the actuarial
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studies for trend and pricing work. This work seeks to add another tool to the risk quanti�cation process
for members whose costs form a large part of the overall costs of care as well as a signi�cant contributor to
the force of trend.

Many authors have examined the issue of high-cost claimants from di�erent directions. A �rst group
explored the common characteristics of high-cost members. Zook and Moore (1980) looked at 2238 patients
(of which 13% were high-cost) and found that smoking and drinking were much more prevalent in the
high-cost group than the low-cost one. Schroeder et al. (1979) found that very few (17%) of the high-cost
claimants su�ered from an actual medical catastrophe; most had chronic conditions. Joynt et al. (2013)
found that only a small portion of the total spending for high-cost members was due to preventable acute
care. Zulman et al. (2015) showed that multimorbidity is common among high-cost members of the U.S.
Veterans A�airs Health Care System. They suggest that interventions are needed to help those members
better manage multiple conditions. In order to e�ectively assign these interventions, we need to predict who
will likely be high-cost.

Another group looked at which covariates are most likely to predict high-cost members. Gar�nkel et al.
(1988) used the National Medical Care Utilization and Expenditure Survey to look at predictors of high-
cost patients. They found that health status, followed by economic factors best predict high-cost members.
Meenan et al. (2003) compared many risk-adjustment models available at the time to determine which are
the best at predicting high-cost patients. Fleishman and Cohen (2010) analyzed the Medical Expenditure
Panel Survey (MEPS) and compared a risk score (diagnostic cost group) with a count of chronic conditions
on their ability to predict which members would be in the highest cost decile the following year. They also
checked whether self-rated health status and functional limitations improved predictions. They found that
the risk score was the best predictor. After controlling for the risk score, the number of chronic conditions,
self-reported health status, and functional limitations were signi�cantly associated with future high-costs.

A �nal group, whose work most closely aligns with our paper, focus on developing optimal methodology
for predicting high-cost members given available covariates. There are two main ways to predict who will
be high-cost. Predicting the actual costs for the member will give an entire predictive distribution. Then
calculating the probability of any cost, or of exceeding any threshold is trivial. Bayesian hierarchical models
(Fellingham et al., 2005), Bayesian nonparametric regression (Fellingham et al., 2015; Hong and Martin,
2017; Richardson and Hartman, 2018), two-part models (Rosenberg and Farrell, 2008; Frees et al., 2011,
2013), and machine learning models (Duncan et al., 2016; Robinson, 2008; Moturu et al., 2007, 2009) can be
used to solve this problem. Accurate prediction of probabilities in the (notably heavy) tails can be di�cult
due to the lack of extreme data and will be largely dependent upon model assumptions. For those reasons,
we focus on predicting the probabilities that members will exceed certain thresholds. While the predictions
are not as detailed as those obtained from the total cost models mentioned earlier, they are not as dependent
on model assumptions and focus on a simpler question which the sparse extreme data are better able to
answer. Exceedance probabilities also naturally answer the question of how likely certain members are to
bene�t from intervention, both in cost and member outcome.

2. Data

Our data was gathered by the Health Care Cost Institute. It consists of member information from three
of the largest health insurers in the United States. When we performed our analysis, they had data for each
year 2009-2015. The number of members in each year are listed in Table 1.

The variables we are interested in for our analysis are described in Table 2. We divide the members into
�ve groups based on their allowed, adjudicated costs for the year (<100K, 100K-250K, 250K-500K, 500K-1M,
>1M). The vast majority of the members had less than $100,000 in total claims each year. To understand
the rarity of the group we are exploring, Table 3 shows the number of members in each high-cost group. As
is readily apparent, there are not many members in the extremely high-cost group. This is another reason
to focus on the probability of exceeding a certain threshold, rather than attempt to estimate a predictive
distribution of costs for each member. We are essentially taking the role of an intervention manager and
trying to �nd those members which are most likely to be high-cost. The proportion of all members in each
of the high-cost groups have also increased every year.
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Year Number of Members
2009 48,511,544
2010 47,539,751
2011 46,193,435
2012 46,544,359
2013 47,351,996
2014 48,087,209
2015 47,782,320

Table 1: Number of members in each dataset

Variable Name Description
Z_PATID Member ID number
RX_CVG_IND Prescription drug coverage indicator (1 if the member has coverage).

If 1, the pharmacy costs for the year are included in the total allowed costs below.
GDR Gender (1 for male, 2 for female)
AGE Age in years
MKT_SGMNT_CD Market segment code (I-Individual market, G-Individual group conversion,

L-Large, S-Small, O-Other) For inference, we focus only on the individual market
(INDV_FLAG), but in prediction we use all segments.

CAT Total allowed, adjudicated cost for the year, divided into �ve groups
(<100K, 100K-250K, 250K-500K, 500K-1M, >1M)

CATLESS1 Total allowed, adjudicated cost for the member one year ago, divided into �ve groups
(<100K, 100K-250K, 250K-500K, 500K-1M, >1M)

CATLESS2 Total allowed, adjudicated cost for the member two years ago, divided into �ve groups
(<100K, 100K-250K, 250K-500K, 500K-1M, >1M)

Table 2: Variable names and descriptions

When predicting whether a member will be high-cost in a certain year, we only use data available at that
time (similar to how the analysis will be done in practice). We will use data from the previous two years to
predict if the member will be high-cost in the following year. For example, to predict whether the member
will be high-cost in 2012, we will use data from 2010 and 2011. Because we have data from 2009-2015, we
predict each member in 2011-2015. For each prediction year, we only use those members for which we have
at least some data for the year in question and the previous two. That reduces the sizes of our analysis
datasets to those shown in Table 4.

Reducing our dataset to only those who were members for at least part of each of three sequential years
impacts our data (and therefore our inference) in several ways. First, there are no members under the age
of 2 in our prediction datasets. Partially because of those missing infants, the median age of the members
in our analysis dataset is about nine years older than that of those not in our set (39 vs. 30). Further,
much of the lifetime medical spending occurs in the �nal year of life, so those who were expensive and then
passed away in previous years will not be included in our analysis dataset. About 25% of the high cost
members (>100K) from any year are not in the dataset in the following year. Of those in our analysis
dataset, around 50% have prescription drug coverage, whereas of those not in our analysis dataset about
60% have coverage. Additionally, there are about twice as many members in the individual market among
those not in our analysis dataset (about 8% to about 4%), potentially due to people moving to the A�ordable
Care Act's exchanges and our data being unable to connect that person in the two di�erent providers. Most
importantly, the proportion of high-cost members is about the same between the two groups, except for a
few more people (one or two per 100K members) above 1M in the group not in our analysis dataset.
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Year 100K-250K 250K-500K 500K-1M >1M
2009 96,554 17,738 4,162 661
2010 100,812 18,162 4,393 706
2011 108,965 20,375 4,773 841
2012 117,325 22,393 5,250 941
2013 126,099 24,275 5,458 998
2014 135,050 26,018 5,749 1,030
2015 147,220 28,425 6,517 1,200

Table 3: Number of members in each high-cost group

Prediction Year Sample Size
2011 25,954,734
2012 26,539,732
2013 27,061,494
2014 26,425,810
2015 25,199,632

Table 4: Sample size of each three-year dataset

3. Methods

For inference, we �t separate logistic regression models to four di�erent thresholds of high cost, greater
than 100K, 250K, 500K, and 1M in claims. We are interested in the parameter estimates and whether they
change over time. Looking at the parameter estimates over time will allow us to see both how consistent the
estimates are and to notice any temporal changes or patterns (possibly due to the A�ordable Care Act).

For prediction, we will compare two separate models, logistic regression and extreme gradient-boosted
classi�cation trees (Chen and Guestrin, 2016), also known as xgboost. Classi�cation trees attempt to model
which observations are likely to be high-cost by repeatedly splitting the dataset on di�erent explanatory
variables, trying to make the resulting subsets of observations as similar as possible (containing mainly
positive or negative cases) while preventing over�tting. Xgboost re�nes standard classi�cation trees by
�tting new trees to the residuals resulting from earlier trees. The e�ectiveness of an xgboost model largely
depends on the hyperparameter settings which we discuss and optimize later in this section. For our particular
application, we �t all of the models in R within the HCCI enclave. With the dataset being so large, the
models take between 5-30 minutes to �t. That will limit the amount of cross-validation we can do as we are
optimizing the hyperparameters.

When we compare the predictive accuracy of the two models, we �t the model to one year (say using
2010 and 2011 to predict 2012), and use that model to �t the following year (2013, using 2011 and 2012).
This will show which model is superior in a realistic situation. This is better than dividing each year into a
training and test set and comparing model accuracy that way.

Classi�cation can be di�cult when the positive class is extremely rare, as it is in our case. To help
mitigate that issue, we will train the 2012 models on three di�erent datasets.

� Standard: The original 2011 data (say 1,000 high-cost members and 1,000,000 low-cost members for
illustration)

� Under: A dataset with the 2011 low-cost members undersampled, making an equal number of high-
and low-cost members. We randomly select (without replacement) 1,000 of the 1,000,000 low-cost
members to be in the training set. This means that we have a training sample of 2,000 members.
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� Over: A dataset with the high-cost members oversampled, again making an equal number of high-
and low-cost members. We randomly select (with replacement) a sample of 1,000,000 from the 1,000
high-cost members. In this case, our training sample will include 2,000,000 members.

To tune the xgboost models, we adjust the following �ve hyperparemters:

� Maximum tree depth, ranging between (3, 10) - maximum number of branch levels in any tree. A
higher number here makes it more likely that an individual tree is over�t.

� Minimum child weight (1, 10) - This parameter tells the tree-building process when to stop. If splitting
a node would make a child have less weight than this parameter, then the process stops. The larger
this value, the simpler the trees will be.

� Subsample (0.5, 1) - Proportion of the total training set used to build each tree. A smaller value will
help to prevent over�tting.

� Column Sample by Tree (0.5, 1) - Proportion of all the possible covariates used to build each tree. A
smaller value helps to prevent over�tting.

� Eta (0,1) - The learning rate. A higher eta will speed up convergence, while a lower eta may make the
convergence more precise.

We created four di�erent xgboost models. The �rst (untrained) uses default values for each of the above
hyperparameters. The next model (trained1) starts with the hyperparameters from the untrained model and
then compares it to ten di�erent possible settings, randomly drawn from the set of possible hyperparameters
(in parentheses in the list above). The settings are compared through 3-fold cross-validation and by choosing
the set of hyperparameters which maximizes the AUC in the cross-validation. This is done only with the
data available through 2011, making sure that the optimization does not include any of the data we are
trying to predict. The following model (trained2) starts with the chosen hyperparameters in trained1, and
then compares that to ten additional randomly drawn possible sets. The �nal model (trained3), follows the
same pattern. The chosen hyperparameters are in Table 5.

Parameter Untrained Trained1 Trained2 Trained3
Maximum Tree Depth 6 3 5 5
Minimum Child Weight 1 9.77 2.98 9.26
Subsample 1 0.66 0.79 0.97
Column Sample by Tree 1 0.76 0.60 0.69
Eta 0.3 0.54 0.52 0.63

Table 5: Hyperparameter settings for the four models

Trained1 and Trained3 have similar hyperparameter settings, though the subsample rates are much higher
for trained3. That could make over�tting more likely in trained3 than in trained1. Trained2 has a much
smaller minimum child weight, which can also lead to more complicated trees and potential over�tting.

4. Results

We divided our results section into two parts. First, we examine the inference results gathered from the
logistic regressions on each year 2011-2015, using the two previous years to help predict current year cost.
Then, we will discuss the prediction results of the various models.
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4.1. Inference

Because we are comparing four di�erent de�nitions of high-cost (100K, 250K, 500K, and 1M, collectively
referred to as thresholds) over �ve di�erent prediction years (2011-2015) we will base the results on a baseline
member who is a 35 year-old male with group coverage and no history of costs above 100K in the last two
years.

4.1.1. Baseline Probabilities

In 2011, our baseline male has about a 0.0018 probability of having allowed costs of more than 100K
(about 1 in every 550 members). The probabilities decrease as the threshold increases with the costs being
250 times more likely to be over 100K than over 1M (see Table 6).

Threshold Probability Relative to 100K
100K 0.001774 100%
250K 0.000345 19.4%
500K 0.000064 3.6%
1M 0.000007 0.4 %

Table 6: Predicted probability of a 35 year-old male being high-cost in 2011

These probabilities have also increased over time. Figure 1 shows the change in probability for our
baseline male over time, relative to the probability in 2011. Notice that the probability being over 1M is
growing most rapidly, followed by 500K, with 100K and 250K similar.
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Figure 1: Increase in baseline predicted probabilities over time

4.1.2. Covariates

The rest of the coe�cients (gender, age, prescription drug coverage, individual or group market, and
high-cost history) have a relatively similar relationship with costs across analysis years, so we will combine
the results from the �ve years into a single estimate and measure of uncertainty. Additionally, because the
individual probabilities are so small, we express them relative to a baseline 35 year-old male with group
coverage and no history of high claims. The relativities (and their con�dence intervals) are displayed in
Table 7.

Claims history has by far the largest e�ect on high-cost probability. A 35 year-old male member with
over a million dollars in claims last year has almost a 40% chance of claiming more than 100K this year, up
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100K 250K 500K 1M
Age 35 Male (Baseline) 1.0 (0.8, 1.2) 1.0 (0.7, 1.3) 1.0 (0.6, 1.7) 1.0 (0.4, 2.8)

RX Coverage 1.2 (1.1, 1.5) 1.1 (0.8, 1.5) 1.0 (0.6, 1.7) 1.0 (0.3, 2.7)
Female 0.9 (0.8, 1.1) 0.8 (0.6, 1.1) 0.8 (0.5, 1.3) 0.8 (0.3, 2.2)

Individual Market 0.7 (0.6, 0.9) 0.8 (0.6, 1.0) 0.8 (0.5, 1.4) 0.8 (0.2, 2.5)
Age 15 0.5 (0.4, 0.5) 0.6 (0.5, 0.8) 0.9 (0.6, 1.5) 1.4 (0.6, 3.7)
Age 55 2.5 (2.1, 3.0) 2.0 (1.5, 2.7) 1.6 (0.9, 2.8) 1.3 (0.4, 4.2)
Age 75 2.6 (2.2, 3.1) 2.0 (1.4, 2.7) 1.5 (0.8, 2.8) 1.1 (0.3, 3.9)

100-250K last year 44.6 (38.2, 51.9) 61.0 (45.5, 81.6) 70.1 (41.5, 118.4) 70.0 (23.9, 205.2)
250-500K last year 93.4 (81.0, 107.2) 242.4 (184.0, 316.9) 313.7 (186.5, 524.0) 301.6 (102.0, 887.8)
500K-1M last year 139.2 (121.0, 159.0) 424.1 (325.5, 545.3) 1144.7 (696.9, 1836.6) 1414.0 (482.1, 4071.8)

1M+ last year 194.6 (162.0, 229.4) 626.6 (468.4, 817.3) 1893.0 (1137.7, 3019.5) 5458.6 (1864.6, 14898.3)
100-250K two years ago 6.8 (5.8, 8.1) 3.1 (2.3, 4.2) 2.1 (1.2, 3.5) 1.9 (0.7, 5.8)
250-500K two years ago 5.9 (5.0, 7.1) 4.6 (3.4, 6.3) 2.9 (1.7, 5.0) 2.1 (0.7, 6.3)
500K-1M two years ago 5.0 (4.0, 6.1) 4.8 (3.4, 6.6) 4.6 (2.7, 8.1) 3.4 (1.1, 10.4)

1M+ two years ago 6.7 (4.7, 9.5) 5.1 (3.2, 7.9) 4.9 (2.5, 9.5) 7.1 (2.1, 23.8)

Table 7: Predicted probability of being high-cost, relative to a 35 year-old male

from 0.2% if they had less than 100K in claims last year. Even having high claims two years ago has a big
impact on the high-cost probability for this year. The rest of the covariates have small to negligible impacts.

4.2. Prediction

We compare the predictions from a logistic regression to those from gradient boosted trees, both with
default hyperparameter settings and settings optimized through cross-validation. We compare the accuracy
using the area under the ROC curve (AUC). The ROC curve plots the true positive rate against the false
positive rate as the threshold changes. Therefore, the larger the AUC, the better the model discerns between
high- and low-cost members. The AUC values are relatively constant across years, so we combined them
into single estimates. Plots of the average AUC values across years are available in Figure 2.

For thresholds of 100K and 250K, all of the xgboost models signi�cantly outperform logistic regression.
Also, the sampling method doesn't seem to have much of an impact. As the number of positive cases decreases
(for thresholds of 500K and 1M), oversampling outperforms the other two sampling methods for the xgboost
models. This is less true for trained1, where undersampling works essentially as well as oversampling. The
hyperparameter settings for Trained1 constrained the model to be relatively simple, possibly muting the
bene�t of the oversampling. For the other three xgboost models, undersampling is by far the worst method.
Logistic regression performs equally well, regardless of sampling methodology, but in all cases is outperformed
by each of the oversampled xgboost models.

5. Conclusion

In this paper, we use the Health Care Cost Institute data (approximately 47M members over 7 years)
to examine how to best predict and describe high-cost members. Using a logistic regression, we �nd that
cost history, age, and prescription drug coverage all predict high-costs, with cost history being by far the
most predictive. In addition to the logistic regression model, we compare the predictive accuracy of extreme
gradient boosting and �nd that the added �exibility of the extreme gradient boosting greatly improves the
predictive power. Finally, we show that with our extremely unbalanced classes, oversampling the minority
class provides better predictions than undersampling the majority class or using the training data as is.

There are many potential avenues of future work to explore. With the HCCI data, it would be very
interesting to further explore the many relationships among the members (spatially, temporally, and hier-
archically). We could look at the di�erence between those members with RX coverage and those without.
It would also be interesting to try and quantify the impact of wellness programs, or attempt to explore the
impact of the A�ordable Care Act.
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Figure 2: Average area under the ROC curve across years
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