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Abstract4

This paper compares two nonparametric tree-based models, quantile regression5

forests (QRF) and Bayesian additive regression trees (BART), for predicting storm6

outages on an electric distribution network in Connecticut, USA. We evaluated point7

estimates and prediction intervals of outage predictions for both models using high-8

resolution weather, infrastructure, and land use data for 89 storm events (including9

hurricanes, blizzards and thunderstorms). We found that QRF produced better results10

for high spatial resolutions, while BART predictions aggregated to coarser resolutions11

more effectively, which would allow for a utility to make better decisions about allo-12

cating pre-storm resources. We also found that the predictive accuracy was dependent13

on the season (e.g. tree-leaf condition, storm characteristics), and that the predictions14

were most accurate for winter storms. Given the comparable performance characteris-15

tics, we suggest that BART and QRF be implemented together to show the complete16

picture of a storm’s potential impact on the electric distribution network.17

KEY WORDS: Weather hazards; electric distribution network; quantile regression18

forests; Bayesian additive regression trees; critical infrastructure outage modeling.19
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1 INTRODUCTION20

Severe weather is among the major causes of damage to electric distribution networks and21

resultant power outages in the United States (1). In addition to hurricanes, for which signif-22

icant research has been focused, other more frequent weather systems (e.g. thunderstorms23

and frontal systems) have caused power outages in Connecticut lasting from several hours up24

to several days. Accurate prediction of the number of outages associated with storms would25

allow utility companies to restore power faster by allocating resources more efficiently. Fur-26

thermore, to effectively use these outage predictions in decision-making, models must exhibit27

acceptable accuracy in the spatial distribution of estimated outages and characterization of28

the prediction uncertainty.29

A wide range of models have been employed in hurricane outage modeling, beginning30

with parametric statistical models. Generalized linear models (GLMs) were utilized by Liu31

et al. (2) using negative binomial regression with binary index variables representing storm32

similarity characteristics. Guikema et al. (3) explored the effects of tree trimming on hurricane33

outages with a GLM and a generalized linear mixed model (GLMM). Liu et al. (4) attempted34

the use of spatial GLMM for better inference on variables, but did not achieve improved35

prediction accuracies using random effects or spatial correlation modeling. Han et al. (5)36

suggested using more informative descriptive variables with GLM and performed principal37

components analysis (PCA) as a treatment to transform correlated variables and obtain38

stable parameter estimates.39

Nonparametric models for hurricane outage prediction gained popularity shortly there-40

after. Guikema et al. (6) compared multiple models including classification and regres-41

sion trees (CART), generalized additive models (GAM), Bayesian additive regression trees42

(BART) and GLM, and discussed the advantages of nonparametric models over parametric43

models for outage prediction for hurricanes. Nateghi et al. (7) expanded the topic to out-44

age duration modeling and concluded that multivariate adaptive regression splines (MARS)45

and BART had better results than traditional survival analysis models and CART, and46
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that BART produced the lowest prediction error. Guikema et al. (8) proposed a two-stage47

model using classification trees and logistic regression to deal with zero-inflation and GAM48

for over-dispersion, which helped balance the statistical assumption and prediction. Re-49

cently, Nateghi et al. (9) highlighted the modifiable areal unit problem (MAUP) and com-50

pared predictions from random forests (RF) and BART, concluding that RF benefited from51

its distribution-free setting and performed the best in outage duration prediction. Among52

all nonparametric models, tree-based models, and especially multiple trees or forests models,53

have been used widely and have been generally preferred in modeling hurricane outages.54

Aiming to assist the largest utility company in Connecticut, Eversource Energy, in pre-55

storm decision making, we investigated two models and compared their predictions of spatial56

outage patterns and their ability to perform statistical inference. This study builds on our57

previous research that investigated the use of different model forcing data and methods for58

predicting power outages in Connecticut (Wanik et al. (10)). Prediction intervals of model59

estimates are as important for risk management as point estimations of storm outages; a point60

estimate only provides a single value at each location to describe the predicted storm outages,61

while prediction intervals provide a characterization of the uncertainty associated with the62

prediction. The lack of uncertainty characterization can affect the complex socioeconomic63

aspects of emergency response. In this paper, we compare two nonparametric tree-based64

models for the prediction of storm outages on the electric distribution network of Eversource65

Energy. In keeping with the most recent research in hurricane outage prediction, we selected66

quantile regression forests (QRF) and Bayesian additive regression trees (BART) as our67

candidate models because they were capable of both point estimation and prediction interval68

construction. BART was shown by Guikema et al. (6) to be the most accurate of the different69

hurricane outage prediction models evaluated in that study. QRF is derived from the random70

forest model, which has been demonstrated by Nateghi et al. (9) to provide robust spatial data71

aggregation and better power outage duration estimates than BART in terms of prediction72

error.73
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We seek to address the following three questions about these two models: 1) How accurate74

are these models in providing the point estimates (single predicted value per storm) of outages75

for storms of varying severity?; 2) How efficient are these models in evaluating the prediction76

uncertainty (i.e. the prediction interval)?; 3) Are these models able to predict outages for77

different spatial resolutions via aggregation?78

2 STUDY AREA AND DATA DESCRIPTION79

The analysis was performed on a dataset of 89 storms of multiple temporal and spatial80

scales (i.e. deep and shallow convective events, hurricanes, blizzards and thunderstorms)81

that occurred during a ten-year period (2005-2014). We selected the explanatory variables82

based on their potential contribution to outages on the overhead lines when interactions of83

overhead lines and vegetation occur. All data including distribution system infrastructure,84

and land cover information (Table 1) were processed on a high-resolution gridded domain85

(grid spacing: 2x2 km2) to represent the average conditions in the corresponding Numerical86

Weather Prediction (NWP) model grid spacing. Further, a seasonal categorization variable87

was created for each of the 89 storms (Table I) to represent the actual tree-leaf conditions88

(e.g. leaf-on, leaf-off or transition) at the time of each storm. The study area was the89

Connecticut service territory of Eversource Energy (Figure 1), which spans 149 towns in90

Connecticut and is organized into four divisions (central, west, east and south). The outage91

predictions were analyzed over the corresponding NWP model grid cells, and subsequently92

spatially aggregated into coarser resolutions (town, division and territory) to investigate the93

effects of multiple scales.94

2.1 Storm Outage Data95

An outage is defined as a location where a two-man restoration crew needs to be sent for96

manual intervention to restore power. Storm outage records were acquired from the utility’s97
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outage management system (OMS) and to improve data quality, duplicate outage records98

and records with cause codes irrelevant to weather (e.g. vandalism or vehicular outage)99

were deleted from the data. Outages were recorded at the location of the nearest upstream100

isolating device (i.e. fuses, reclosers, switches, transformers) from where the damage on the101

overhead line occurred, which may be different from where the actual outage occurred. We102

made no differentiation of the different outage types to the overhead lines (i.e. a tree leaning103

on a conductor, a malfunctioning isolating device, or a snapped pole, etc.) because such104

data were not available to us.105

2.2 Weather Simulation and Verification106

The Weather Research and Forecasting Model (WRF; Skamarock et al. (11)) was devised107

to simulate the 89 storm events used in our study. The WRF model simulations were108

initialized and constrained at the model boundaries using NCEP Global Forecast System109

(GFS) analysis fields (12). The NWP model is set up with three nested domains with 18, 6110

and 2-km of increasing grid spacing (Figure 2). The simulated meteorological variables were111

summarized into maximum and mean values (Table I). The wind-related variables in the112

NWP model included wind at 10m, gust winds, and wind stress. The precipitation-related113

variables comprised of total accumulated precipitation, the precipitation rate, and snow114

water equivalent (SWE). The mean values of the selected meteorological variables represent115

the lasting impact of a storm. The means were calculated over the 4-hour window defined by116

the simulated wind speed, to which hereafter we refer to as the sustained period of the storm.117

This period is defined by the highest averaged value in the 4-hour running window across118

the NWP simulation length. The wind-based sustained period was then used to calculate119

the mean of the other meteorological variables. The maximum values of the meteorological120

variables represent the peak severity that occurred during the storm; they correspond to121

the nominal variable value at the time of highest simulated wind speed. Complementing122

the mean and maximum variables, the duration of winds and gusts above defined thresholds123
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(9m/s for wind, 18m/s and 27m/s for gust) were used to relate the duration of damaging124

winds to outages (Table I).125

The NWP model simulations were verified by comparing the sustained wind speed (pre-126

viously defined) for three major events (Hurricane Irene in August 2011; Hurricane Sandy127

in October 2012; Blizzard Nemo in February 2013) against METAR observations (airport128

meteorological station data) provided by the National Centers for Environmental Prediction129

(NCEP) ADP Global Upper Air and Surface Weather Observations (13). Though not shown130

here, the NWP model simulations showed acceptable agreement with the airport station131

data (e.g. low mean bias, and high correlation between actual and simulated sustained wind132

speed). The reader may refer to Wanik et al. (10) for more details on this verification exercise.133

2.3 Seasonal Categorization134

Storms affecting the distribution network can have a wide range of weather attributes (e.g.135

heavy snow or rain) that interact with overlying vegetation, and can have differing impact136

on the outage magnitude and frequency depending on the tree-leaf condition. For exam-137

ple, high winds usually have a greater impact on trees with leaves due to increased wind138

loading (14), (15). To capture this dynamic, we grouped our data by season (Table I), which139

resulted in separate fits for each of the three different seasonal categories. Of the 89 storm140

events in our dataset, there were 38 storms and 1 hurricane (Irene) during the summer (leaves141

on) months (June to September); there were 24 storms and 1 hurricane (Sandy) during the142

spring and fall (transition) months (October, November, April and May); and there were 25143

storms during the winter (leaves off) months (December to March).144

2.4 Infrastructure and Land Use145

The same infrastructure and land use data from Wanik et al. (10) study was used in this146

paper. The sum of isolating devices (e.g. sum of fuses, reclosers, switches, transformers)147

in each 2-km grid cell was an important predictor in our models, which we attribute to148
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the outage recording methodology (Section 2.1); if only one outage can be recorded at an149

isolating device, a grid cell with more isolating devices has more chances to record more150

outages than a grid cell with less isolating devices. Given that outages were recorded at the151

nearest isolating device and not the actual outage location, the different types of isolating152

devices were summed up into a single variable (“sumAssets”) instead of modeling outages153

by isolating device type. This variable sets the upper limit on the number of outages that154

could occur in a 2-km grid cell.155

Accurate tree-specific data (i.e. height, species, and health) around overhead lines are156

difficult to acquire, so we used land cover data aggregated around the overhead lines as a157

surrogate for the actual tree data. This aggregation differs with previous research (Quir-158

ing et al. (16)) that used the percentage of all land cover types in a grid cell, regardless of159

whether or not certain land cover types in that grid cell interacted with the overhead lines160

(i.e. a waterbody that is in the grid cell but is not close enough to the overhead lines to161

cause influence). Land cover data (30m resolution) were obtained from the University of162

Connecticut Center for Land Use Education and Research (CLEAR) (17) and were used to163

generate percentages of land use per grid cell. Details about the calculation of land use are164

available in Wanik et al. (10).165

3 METHODOLOGY166

As two systematically different examples of nonparametric tree-based models, QRF and167

BART utilize different assumptions and techniques for their application. We briefly introduce168

the benefits and known issues of these two models, followed by measurements and methods169

for analysis and comparison of the models.170
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3.1 Quantile Regression Forests171

Based on the well-known random forests algorithm by Breiman (18), Meinshausen (19) created172

the quantile regression forests (QRF) with the idea of quantile regression from econometrics.173

Similar to the weighted average of all the trees for predicted expected value of response,174

QRF utilizes the same weights to calculate the empirical distribution function:175

F̂ (y|X = x) =
n∑
i=1

wi(x)1{Yi≤y}. (1)

The algorithm of QRF can be summarized as:176

1. Grow k trees Tt, t = 1, ..., k, as in random forests. However, for every terminal node of177

every tree, take note of all observations, not just their average.178

2. For a given X = x, drop x down all trees. Compute the weight wi(x, Tt) of observation179

i = 1, ..., n for every tree. Compute weight wi(x) for every observation i = 1, ..., n as an180

average over wi(x, Tt), t = 1, ..., k. These weight calculations are the same as in random181

forests.182

3. Compute the estimate of the distribution function as in (Equation 1), using the weights183

from Step 2.184

Given the estimated empirical distribution, quantiles and percentiles are readily available.185

In this case, mean from the estimated distribution is a natural point estimate, which is186

exactly the same as random forests. Meinshausen (20) has provided an R package called187

“quantregForest”, with dependency on the “randomForest” package by Liaw et al. (21). Our188

analysis was based on a slightly modified version of “quantregForest” package providing RF189

prediction as well as desired quantiles.190

QRF has already been used in several aspects of natural phenomena, but have not been191

implemented in storm outage prediction directly. Juban et al. (22) tested QRF in approximat-192

ing the kernel density of short-term wind power, indicating comparatively wide prediction193
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intervals by QRF. Francke et al. (23) addressed the better performance of QRF over GLMs194

in flood-based analysis of high-magnitude sediment transport. Zimmermann et al. (24) also195

took advantage of QRF to study erosion in rainforests.196

Suppose we need to generate a prediction interval for a storm event by aggregation.197

Accurate empirical distributions are highly preferred, but demand a large number of obser-198

vations. For example, to generate percentiles (actually 101 quantiles including maximum and199

minimum), we prefer more than 100 observations in each terminal node. However, enforcing200

too many observations in terminal nodes could introduce bias if the sample size is not large201

enough. In this study, we compared QRF to BART in order to get a deeper understanding202

about the importance of prediction intervals in characterizing model performance.203

3.2 Bayesian Additive Regression Trees204

Bayesian additive regression trees model (BART), introduced by Chipman, George and205

McCulloch (25, 26), is a high performance derivation of Bayesian classification and regression206

trees model (CART). It takes advantage of a backfitting MCMC algorithm (27) in generating207

the posterior sample of CART. Instead of a single regression tree (the mode of posterior208

tree sample), a sum of regression trees is utilized to estimate the response under normal209

assumption:210

Y =
m∑
j=1

g(x;Tj,Mj)︸ ︷︷ ︸
Mean Model

+ ε, ε ∼ N(0, σ2)︸ ︷︷ ︸
V ariance Model

. (2)

Here Tj stands for the jth regression tree; Mj stands for the jth set of terminal nodes; m211

stands for total number of trees. The prior for probability of splitting node η (depth=dη),212

which is also presented by Chipman, George and McCulloch (28):213

psplit = α(1 + dη)
−β, 0 ≤ α ≤ 1 and β ≥ 0. (3)

Similar to Friedman’s gradient boosting (29), each terminal nodes µij is determined by214
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N(0, σ2
µ), where σµ = 0.5/k

√
m. An inverse chi-square distribution is set as the prior of σ2,215

parameterized with ν and P (σ < σ̂) = q. All of these hyper parameters can be optimized216

via cross-validation.217

Chipman et al. (30) provided an R package “BayesTree” based on C and Fortran, with218

their original work. Pratola et al. (31) offered a standalone C++ implementation with fast219

parallel computation. Kapelner and Bleich et al. (32) made the R package “bartMachine”220

based on rJava, including features like parallel cross-validation and interaction detection,221

which we used in this paper.222

BART has been widely used in risk analysis and the prediction of natural hazards.223

Guikema et al. (6) conducted a comparison of multiple models for estimating the number of224

damaged poles during storms, and concluded that BART and an ensemble model with BART225

outperformed other parametric regression methods. Nateghi et al. (7) compared BART with226

traditional survival models in predicting power outage durations in Hurricane Ivan, 2004,227

and concluded that BART had better performance over parametric survival models. Blat-228

tenberger et al. (33) implemented BART in predicting binary response of avalanches crossing229

streets. They compared BART classification with linear and logistic regressions by altering230

the cutoff probabilities and concluded that BART excelled in predicting binary response.231

As a well-defined Bayesian statistical model, BART naturally offers prediction intervals232

under its model assumptions, but the error term can be misspecified with respect to storm233

outage modeling. Both modeling the number of outages (6) and outage durations (9) involve234

errors that do not necessarily follow a normal distribution. In our study, the response235

variable (the number of outages) seemed to follow a Poisson distribution in grid cells and236

towns, while a zero-truncated normal distribution seemed to fit better in divisions and the237

territory (Figure 3; hurricanes are excluded for extreme values.). That is, these errors could238

approximately satisfy normality and homogeneity of variance in some situations, while the239

distribution of data aggregated with different spatial resolution can vary greatly. This issue240

was first discovered by Gehlke and Biehl (34) and later discussed in details by Openshaw (35).241
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To understand the impact in our study, we would like to study the prediction intervals given242

by BART in more detail.243

3.3 Metrics of Model Performance Evaluation244

We will compare the two models using the following metrics:245

Mean absolute error (MAE) is an absolute measurement of the point estimate error246

of n predictions, which is calculated by247

MAE =
1

n

n∑
i=1

|ŷi − yi|. (4)

Root mean square error (RMSE) measures the magnitude of error as well as its248

variability, which is defined as249

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (5)

MAE is less than or equal to RMSE. Closer difference between MAE and RMSE indicates250

smaller variability in the point estimate of error. A combination of MAE and RMSE is a251

common tool in model comparison with respect to point estimates.252

Relative error (RE) is also known as the relative percentage error, which is computed253

by the following normalized average:254

RE =
ŷi − yi
yi

. (6)

RE is useful for diagnostics of over-prediction or under-prediction, typically offering an255

indication of bias.256

Nash-Sutcliffe efficiency (NSE) is the generalized version of R-squared from paramet-257

ric regression, and is widely used in hydrology. NSE was introduced by Nash and Sutcliffe (36)
258
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and summarized by Moriasi et al. (37). It is calculated by the following:259

NSE = 1−
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2

unbiased
= 1−

ˆV ar(error)

ˆV ar(y)
. (7)

R2 is intuitively known as “percent variance explained”, and pseudo R2 is a built-in260

statistic of both “randomForest” package and “bartMachine” package in R. However, since261

R2 is always measured with in-sample data, we use the name of NSE to highlight its capability262

in validation. Without bias and overfitting, NSE is a powerful tool measuring predictions of263

spatial variability for nonparametric models; NSE values range from negative infinity to 1.264

For example, NSE for a single storm validation could be negative, while the average NSE for265

the validation of all the storms remains positive, indicating that predictions for this specific266

storm is worse than a mean-only model in terms of spatial variability. When calculating267

NSE, we corrected the bias of total predicted value of each storm by scaling in order to focus268

on the spatial variability of each storm event.269

When R2 is positive, it is weakly increasing as p/n increases, where p stands for the270

number of predictors and n stands for number of predictions. In our case, we aggregate271

predicted values from high resolution to low resolutions, which actually decreases n with272

predictors fixed. When NSE is positive (<1) for grid cells, we can expect NSE to be positive273

and even closer to 1 for towns and divisions, since the pseudo p/n increases. Similarly,274

negative NSE in high resolution may result in even smaller NSE in low resolutions. Thus we275

may observe a “polarization” effect after aggregation.276

Uncertainty ratio (UR) is a benchmark statistic of prediction uncertainty. Denote the277

prediction interval as (Qloweri , Qupperi). Similar to the UR used in Özkaynak et al. (38), our278

definition of UR is a generalized version for asymmetric intervals:279

UR =

∑n
i=1(Qupperi −Qloweri)∑n

i=1 yi
. (8)

While UR is computed by summing up all the ranges of prediction intervals, the formal280
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calculation of a prediction interval for each storm is done by summing up the simulated281

sample of prediction for each grid cell. Larger UR indicates relatively wider ranges of the282

prediction intervals (which may be less useful than narrower intervals, as they provide less283

detailed information).284

Exceedance probability (EP) is a measurement of the probability that actual value285

will exceed the prediction interval. In this paper, we calculate the EP for each storm by286

P̂{exceed.} = 1− 1

n

n∑
i=1

1{Qloweri
<yi<Qupperi}. (9)

Similar to UR, large EP is unfavorable, and it implies a large chance to have actual values287

outside the prediction intervals.288

Coverage percentage is the opposite of exceedance probability and is defined as289

Coverage % =
1

n

n∑
i=1

1{Qloweri
<yi<Qupperi} ∗ 100%. (10)

In contrast to exceedance probability, we pursue high coverage rate of prediction intervals290

on actual values.291

Rank histogram: A rank histogram provides a diagnosis of bias and dispersion in en-292

semble predictions (detailed interpretation of this plot can be found in Hamill (39)). Suppose293

we have m predictions for each observation yi, denoted as {ŷij}j=1,2,...,m, and then the “en-294

semble” prediction is ŷi = ŷij. A good model implies that the response is a realization of the295

prediction distribution, namely:296

E{P [ ˆyi,j−1 < yi < ŷi,j]} =
1

m+ 1
. (11)

A rank histogram could be generated by collecting all the ranks of actual value in their297

prediction samples, denoted by R = (r1, r2, . . . , rm+1), where rj is the following average over298
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all the i’s:299

rj = P̂{ ˆyi,j−1 < yi < ŷi,j}. (12)

An ideal rank histogram should display a uniform distribution. A rank histogram with300

a convex function indicates under-dispersive predictions; a concave function implies over-301

dispersion. A rank histogram with larger values on the right than on the left addresses302

negative bias of predictions, while positively biased predictions yield large value on the left.303

In short, rank histogram above average means the distribution of actual values is “denser”304

than the distribution of predictions and vice versa.305

3.4 Methods of Model Performance Comparison306

Our analysis is based on dataset containing 89 storms that occurred in the Eversource307

(Connecticut) service territory, which resulted in 253,739 observations (89 storms with 2,851308

grid cells per storm) for model training and validation. Within each storm, we randomly309

selected two thirds of the observations (n = 1,989) per storm for model training, and training310

data were grouped by season. The rest of the data (n = 952 grid cells per storm) were used for311

model validation. Only model validation results will be presented in our model verification312

statistics.313

For the QRF model, we specified a random forest of 1,000 trees (default setting for314

the “quantregForest” package (20)) and 200 minimal instances for each terminal node to315

generate percentiles. Quantile regression was introduced to obtain 101 percentiles (including316

minimum and maximum) and predicted empirical distribution for each grid cell. The mean of317

the predicted empirical distribution (the same as random forest predictions), are recorded as318

point estimates at the grid cell level. We calculated 80% prediction intervals for each grid cell319

with the 10% and 90% prediction quantiles from QRF. We then sampled from the predicted320

empirical distribution 10,000 times per grid cell and aggregated these prediction samples to321

get empirical distributions in town, division and territory resolution. The weights obtained322
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from step 2 in Section 3.1, were normalized as probabilities to draw prediction sample from323

training data responses. The mean and quantiles are consistent with predicted distribution,324

proved by Bickel et al. (40). After that, sample means and 80% intervals are calculated for325

these 3 granularities. In the end, we combined these point estimations (means) and intervals326

for different seasons and generated plots of statistics, such as NSE, UR and rank histogram.327

For the BART model, a 5-fold cross-validation indicated the following settings for the328

parameters: 50 trees, k = 2, q = 0.99, ν = 3, while other parameters remained default. In329

order to reach the convergence of MCMC, we performed 10,000 burn-in iterations, which330

produced a momentum sample (discarded). After that, we ran another 10,000 iterations to331

get the prediction sample of the model, which was used for prediction and validation. Point332

estimations and prediction samples for each observation in the testing dataset were computed333

in the Bayesian way. That is, sampling from the mean model (Equation 2) posterior sample334

and variance model (Equation 2) posterior sample under model assumptions. In contrast335

to QRF, BART generated prediction samples from a well-defined distribution instead of336

empirical distribution. Prediction intervals were calculated for BART in a way similar to337

QRF: the 10% and 90% quantiles from prediction samples for grid cells, or aggregated338

prediction samples for resolution lower than the grid cell.339

We plotted statistics grouped by season and varying spatial resolutions (grid cell, town,340

division and territory) for evaluation. By inspecting the plots, we intuitively summarized341

the different behaviors of QRF and BART, followed by a discussion of the observed patterns342

and their causes.343

4 RESULTS AND DISCUSSION344

First, we will discuss the QRF and BART performance for predicting Hurricane Irene (2011)345

and Hurricane Sandy (2012) outages. Then, we will evaluate the consistency and prediction346

intervals of QRF and BART for different types of storms in our database. This evaluation347
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is based on the statistical metrics described above, evaluated at different spatial resolutions348

ranging from the 2-km grid cell to town and regional averages.349

4.1 Hurricane Outage Modeling350

4.1.1 Point Estimate Results351

With respect to hurricanes, Table II shows that both QRF and BART performed well in352

terms of point estimates, compared with a mean model (assuming uniform outages across grid353

cells). The mean model performed well in predicting total number of outages for Hurricane354

Sandy, because the randomly selected validation partition happened to capture two thirds355

of total outages in this case. However, the town level MAE and RMSE reveal that the356

mean model did not spatially predict the actual outages for Irene and Sandy. Both QRF357

and BART exhibited small MAE values (5.50 - 8.86 outages per town) with RMSE values358

close to MAE values, which indicates moderate variance of the point estimates and a lack of359

large residuals. For these tropical storm cases, BART showed less error than QRF in town360

resolution but did not exhibit an overwhelming advantage. QRF predictions were slightly361

more spread-out than BART as shown in the scatter plots of Figure 4, which were consistent362

to the error metrics in Table II. Figure 5 illustrates the similar capability of QRF and BART363

in explaining the spatial variability of the predictions using the town-aggregated estimates;364

both QRF and BART predicted that the majority of outages from Irene and Sandy would365

be in central and southwestern Connecticut.366

4.1.2 Prediction Interval Results367

Both models exhibited different characteristics in terms of their prediction intervals. Figure368

4 shows that QRF produced more conservative town-resolution predictions by offering longer369

prediction intervals and a higher coverage rate than BART; coverage values for Irene and370

Sandy were 84% (69%) and 87% (77%) for QRF (BART) using the 80% confidence intervals.371

However, BART had narrower prediction intervals and was able to the cover actual number372
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of outages for both Irene and Sandy in Table II, while QRF failed to cover Irene’s actual373

number of outages in its interval. We also noticed that BART produced symmetric intervals374

from the normal distribution, while QRF generated asymmetric intervals from the empirical375

distribution. Although we observed comparatively good results for BART, we were unable to376

conclude which model was superior in terms of predicting storm outages from analyzing these377

two hurricanes alone. Further investigation of the model performance for both hurricanes378

and the remaining less severe weather events follows next.379

4.2 Comparison of Model Performance for All Storm Events380

4.2.1 Point Estimate Results381

In this section, we will examine how QRF and BART explained the magnitude and spatial382

variation of outages (i.e. point estimates), and also examine how both models’ prediction383

intervals explained the variability of predicted outages. Our analysis will highlight depen-384

dencies of our analysis on storm severity, season and leaf condition.385

Figure 6 summarizes the overall fit of QRF and BART aggregated by storm events. Both386

models show over-prediction for low impact events (< 100 outages), while QRF also shows387

under-prediction for medium-high impact events (between 100 and 1000 outages). QRF388

(BART) exhibits coverage rates of prediction interval around 28% (36% to 60%), which were389

below our expectation (further analysis will reveal the cause of this phenomenon). We can see390

variations in performance across different leaf conditions and storm severities; both models391

did especially well at predicting hurricanes and for minor events with leaves off (winter).392

First we will investigate the point estimate predictions of both models. Figure 7 (a), (b)393

and (c) illustrate how NSE varied for different spatial resolutions (grid, town, division) as a394

function of magnitude (outages per storm), while Figure 8 (a), (b) and (c) illustrate the same395

subject vs. different leaf conditions in boxplots. We see that the majority of storm events396

enjoy positive NSE values in Figure 7 and the 25% quantiles of NSE were close to or above 0397

in Figure 8, indicating that the most of predictions were informative in predicting the spatial398
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variability of outages. In addition, both models show that the NSE for the three resolutions399

generally exhibited a positive correlation between the accuracy of spatial variability modeling400

and the magnitude of the event outages (Figures 7). As expected (Section 3.3), we observed401

in both Figures 7 and 8 that for those events with positive NSE in grid cell resolution, the402

NSE’s increased as the scale resolution became coarser (hence, we have many more events403

with NSE close to 1 at division resolution than at the grid resolution). Conversely, NSE404

tended to worsen at coarser scale aggregations for events where the models exhibited negative405

NSE at grid resolution. This “polarization” effect was so significant in division resolution406

that we should be cautious in using the aggregated results in this resolution, because the407

predicted outages may not reflect the true spatial distribution of outages for some storms.408

For all three resolutions, BART yielded better (more positive) NSE than QRF.409

Figures 7 (d) and 8 (d) show how the relative error (RE) of aggregated storm total410

predictions varied in event magnitude and leaf condition. In the territory resolution (on the411

storm event scale), there is no NSE defined and instead we are more interested in how the412

point estimate performed in predicting the actual magnitude (outages per storm). The RE413

exhibited a negative correlation with magnitude in Figure 7, which suggests that both models414

were accurate for the most severe events. In Figure 8, BART frequently yielded RE’s with415

smaller variance than QRF, which is consistent to its less spread-out predictions in Figure 6.416

Moreover, BART had the lowest (closest to zero) RE as well as highest NSE for the leaves off417

season (Figure 8). We attribute BART’s improved winter (leaves off) season error metrics to418

the similarity of the data in the grouping (e.g. only minor events (no hurricanes), the ground419

is more likely to be frozen). In short, we conclude that BART yielded better point estimates420

than QRF because it had higher NSE and lower (more close to zero) RE than QRF.421

4.2.2 Prediction Interval Results422

We also examined the prediction intervals provided by BART and QRF with uncertainty423

ratio (UR), exceedance probability (EP) and rank histogram. Prediction intervals that are424
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very wide offer no value to decision makers, because they suggest any amount of storm outage425

may occur; conversely, a too-narrow prediction interval may not give a useful estimate of the426

extent of possible outages. These widths of intervals are captured by UR in Figure 9 and a427

negative correlation between UR and magnitude was observed. Although narrow prediction428

intervals for high-magnitude events were favorable for their high certainty, the coverage rate429

becomes an important issue. In contrast to the UR, the actual value of outages exceeded430

the interval more frequently in severe events than in moderate events according to Figure 10431

(a) and (b). We see a reverse trend of UR and EP vs. response magnitude. For BART, this432

is due to the homogeneity of variance assumption that made BART to offer intervals with433

similar absolute widths; for QRF, this is due to the fixed minimal number of instances in434

each terminal node that treated the nonzero or extreme responses the same as zero responses435

(more than 80% of responses as zeros at grid cell level in Figure 3 (a)). In practice, we look436

for prediction intervals that have acceptable small UR and stable EP which associated with437

the confidence level (e.g. a stable probability of 0.2 given 80% intervals in our case). This438

suggests that more flexible assumptions and settings are needed for BART and QRF to439

capture the variation in response magnitude.440

During aggregation, UR reduced step by step from grid cell resolution to territory reso-441

lution (Figure 9), which is favorable. In contrast, the EP generally increased step by step442

via aggregation for both models (Figure 10), which led to the low interval coverage rates in443

Figure 6. In fact, QRF offered both low UR and low EP, implying superior performance444

in the highest resolution (i.e. grid cell). However, QRF’s UR and EP became similar to or445

larger than BART’s after aggregation, suggesting weakness in QRF’s spatial aggregation.446

Since there are only four different divisions, EP can only be 0, 0.25, 0.5, 0.75 or 1 at division447

level in Figure 10 (c); Similarly, EP can only be 0 or 1 at storm event level in Figure 10 (d).448

Specifically, Figure 10 (c) and (d) address that QRF suffered more 1’s of EP than BART.449

To further elaborate the nature and issues of both models, we introduce rank histograms450

in Figures 11 and 12. In practice, a uniformly distributed rank histogram means the pred-451
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icated distribution (including its quantiles and intervals generated by quantiles) reflects452

the variability of the actual response. Overall QRF (Figure 11 (a)) did well in grid cell453

resolution as evidenced by the near-uniform distributed rank histogram with a moderate454

under-prediction issue. In comparison, BART (Figure 12 (a)) produced biased predicted455

distribution by assuming normal distribution on Poisson-distributed actual outages (Figure456

3 (a)) for grid cells. However, spatial aggregation appears to undermine the QRF prediction457

by accumulating biasedness (Figure 11). It is interesting to see BART (Figure 12) benefited458

a little from spatial aggregation. In fact, BART yielded better predictions for storm event459

totals, where the normal distribution becomes a better approximation of combined Poisson460

distributions (Figure 3). This explains why BART ended up with better interval coverage461

rates in Figure 6, even though QRF started from more accurate predicted distribution for462

grid cells. Note that biasedness also differs from location to location and aggregating lo-463

cations with under-estimates and locations with over-estimates could result in complicated464

bias which is hard to predict. In conclusion, BART produced better prediction intervals for465

divisions and whole territory, while QRF did better for grid cells and towns.466

4.3 Discussion467

Similar to previous works in parametric modeling like Liu et al. (4), the models we utilized468

offer prediction intervals as well as point estimates of outages. Instead of simply identifying469

the potentials in quantifying prediction uncertainty, we took one more step in this study to470

evaluate QRF and BART with real-world data for their uncertainty measures. For hurri-471

canes, BART model exceeded QRF in both predicting the outage magnitude (e.g. effective472

prediction intervals) and spatial variation of hurricane outages (Table II). BART under-473

predicted Irene by 1.9% and over-predicted Sandy by 2.4%, while the best ensemble decision474

tree model in our previous work (Wanik et al. (10)) over-predicted Irene by 11% and under-475

predicted Sandy by 4.4%. However, caution must be exercised when directly applying BART476

to storm outage modeling. Nateghi et al. (9) illustrated the weakness of BART when com-477

21



pared to random forest in survival analysis of hurricane outages where the response variable478

did not follow normal distribution. Most storms cause much less outages than hurricanes and479

even result in zero outage in some grid cells (Figure 3 (a)). Alternatively, QRF is promis-480

ing in generating predictions and intervals without normality. Our analysis suggests that481

QRF suffered minor bias (Figure 11 (a)) in dealing with zero-inflated number of outages,482

while BART suffered significant bias (Figure 12 (a)). Compared to previous research (e.g.483

Guikema et al. (8)), we used real zero-inflated response variable based on storm events instead484

of simulated data or hurricanes, to suggest proper treatments to zeros. However, we found485

that BART was at least as good as QRF with respect to aggregated point estimates (Figure486

7 and 8) and was better at generating aggregated prediction intervals (Figure 9 and 10). In487

short, different models could be utilized based on different interests or scales of application.488

There are limitations for our study and results. Unlike Hurricane Ivan, studied by Nateghi489

et al. (9), Hurricanes Irene and Sandy did not make landfall in the service territory of our490

study. Since these storms were not at their peak when they impacted Connecticut, our491

research does not necessarily reflect the “worst case scenario” for outages. We did not492

include ice storms in this research due to their fundamentally different characteristics with493

other events in our database. The categorization of leaf conditions according to seasonal494

periods and spatial aggregation strategy according to geographic boundaries was based upon495

utility’s demand to integrate the models with their emergency planning efforts.496

5 CONCLUSIONS AND FUTURE WORK497

This article has developed and validated outage prediction models for an electric distribu-498

tion network. We incorporated high-resolution weather simulations, distribution infrastruc-499

ture and land use for modeling storm outages using quantile regression forests (QRF) and500

Bayesian additive regression trees (BART). For hurricanes, BART model exceeded QRF in501

both predicting the outage magnitude and spatial variation of hurricanes. In our study, we502
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found that outages caused by storms were not normally distributed and followed different503

distributions in different spatial resolutions. Hence, QRF was better at characterizing storm504

outages in high resolution, but did not aggregate well (from grid to division resolution).505

In contrast, BART did well at aggregating predictions for the storm outage total, but did506

not fully characterize the distribution of storm outages at higher resolution (e.g. grid res-507

olution). In an operational context, utility companies might like to use maps of pre-storm508

outage predictions at the town resolution while also viewing a broader summary of the spa-509

tial variability, point estimates, and prediction intervals for the whole service territory. We510

suggest presenting the results from BART at coarser resolutions (e.g. division and service511

territory) and results from QRF for higher resolutions (e.g. grid and town) to best present512

the potential storm outages. Doing so will ensure that decision-makers get a complete idea513

of the overall severity of the event at a coarser resolution while also providing the detailed514

information supporting a pre-storm response at a higher resolution.515

There are many opportunities for improvement in storm outage modeling on electric dis-516

tribution networks. From a methodological point of view, both models could be modified517

to deal with the Poisson-distributed sparse (i.e. more than 80% as zeros) response variable.518

For QRF, empirical distributions for extreme observations are very different from the ma-519

jority (mostly zeros). Varied treatments for the majority vs. real signals (i.e. outages) could520

help. By experimenting with the minimum number of observations required for the terminal521

node (according to overall magnitude of observations in the node), the accuracy of point522

estimates and prediction intervals may be improved. For BART, an application in general-523

ized linear models (GLMs) with more flexible assumptions and link functions becomes very524

important, because Poisson-distributed data or zero-inflated data appear frequently in high-525

resolution analysis. For example, Poisson, negative binomial and zero-truncated normal with526

heterogeneous variance could perform as priors to assist BART in storm outage modeling. In527

addition to the two-staged model (similar to the classification-GAM model used by Guikema528

et al. (8)), a zero-inflated BART model optimized simultaneously for both zero-inflated clas-529
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sification and zero-truncated signals could be implemented. For spatial aggregation, the530

ideal unbiased prediction may not be available for every location, thus getting accurate pre-531

dictions for another resolution based on biased results is challenging and important. There532

are already some advanced techniques (e.g. Reilly et al. (41)) to aggregate point estimates533

into multiple scales while eliminating bias and error by utilizing spatial patterns. Similar534

techniques to aggregate predicted distributions for each location could be investigated in a535

future study.536

From a modeling point of view, the inconsistent performance of both models for varying537

season categories (tree-leaf condition) implies difficulties in predicting storm outages with538

leaves on trees. Future research may consider including additional effective explanatory539

variables that represent the localized tree conditions such as Leaf Area Index (LAI) (42),540

vegetation management (e.g. tree trimming) data or detailed tree density, location, height541

and species data to better capture this phenomenon.542
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Table I: Explanatory Variables Included in Modeling

Variable Description Type Unit

Wind10m Sustained wind speed at 10 meters Numerical m/s

Gust Wind speed of gust at 10 meters Numerical m/s

WStress Wind stress Numerical -

wgt9 Duration of 10m wind greater than 9m/s Numerical hour

ggt18 Duration of gust greater than 18m/s Numerical hour

ggt27 Duration of gust greater than 27m/s Numerical hour

PreRate Precipitation rate Numerical mm/hr

TotPrec Total accumulated precipitation Numerical mm

Temp Temperature Numerical ◦C

SoilMst Soil moisture Numerical kg/kg

SnoWtEq Snow water equivalent (only for winter) Numerical kg/m2

sumAssets Sum of assets (infrastructure) Numerical count

PercDeveloped Percentage of urban area Numerical %

PercConif Percentage of coniferous trees Numerical %

PercDecid Percentage of deciduous tress Numerical %

Leaves on (summer: Jun to Sep);

seasoncat Leaves off (winter: Dec to Mar); Categorical -

Transition (Oct, Nov, Apr and May).
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Table II: Comparison of QRF and BART with Hurricane Validation Data

Hurricane Model Predicted Pred. Interval MAE RMSE
(Outages) (By Town) (By Town)

Irene QRF 4542 (4311, 4666) 8.86 15.70

(4890) BART 4795 (4688, 4898) 6.12 9.43

MEAN 5200 - 23.95 35.25

Sandy QRF 5060 (4674, 5110) 6.91 11.02

(5052) BART 5171 (5039, 5302) 5.50 8.02

MEAN 5121 - 28.89 52.03
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Figure 1: Spatial Resolutions: 2-km Grid Cell, Town, Division and Territory. (Grid cells
without infrastructure or outside the service territory are excluded.)
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Figure 2: Storm Events Simulation: Weather Research and Forecasting Model Nested Do-
mains in 18 km, 6 km and 2 km grids.
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Figure 3: Density of Outages in Different Resolutions: (a) Grid Cell, (b) Town, (c) Division,
(d) Territory. (Dotted lines stand for gaussian kernel density estimations.)
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Figure 4: Comparison of QRF and BART in Town Resolution: (a) Irene, (b) Sandy. (80%
prediction intervals are given, as well as their coverage rates.)
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Figure 5: Comparison of QRF and BART in Modeling Spatial Variability: Total Number of
Outages by Town for (a) Actual Number of Irene, (b) Actual Number of Sandy, (c) QRF
Validation of Irene, (d) QRF Validation of Sandy, (e) BART Validation of Irene and (f)
BART Validation of Sandy.
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Figure 6: Predictions for Each Storm in Validation Dataset. (80% prediction intervals are
given, as well as their coverage rates.)
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Figure 7: Nash-Sutcliffe Efficiency (NSE) or Relative Error (RE) for Each Storm in Different
Resolutions: (a) NSE for Grid Cells, (b) NSE for Towns, (c) NSE for Divisions, (d) RE for
Territory.
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Figure 8: Nash-Sutcliffe Efficiency (NSE) or Relative Error (RE) for Each Season in Different
Resolutions: (a) NSE for Grid Cells, (b) NSE for Towns, (c) NSE for Divisions, (d) RE for
Territory.
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Figure 9: Uncertainty Ratio (UR) for Each Storm in Different Resolutions: (a) Grid Cell,
(b) Town, (c) Division, (d) Territory.
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Figure 10: Exceedance Probability (EP) for Each Storm in Different Resolutions: (a) Grid
Cell, (b) Town, (c) Division, (d) Territory. (A small amount of noise is add in (c) and (d)
to avoid overlap of points.)
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Figure 11: Rank Histogram of QRF Predictions in Different Resolutions: (a) Grid Cell, (b)
Town, (c) Division, (d) Territory.
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Figure 12: Rank Histogram of BART Predictions in Different Resolutions: (a) Grid Cell,
(b) Town, (c) Division, (d) Territory.
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