
Real-time Prediction for RSV 1

A Bayesian Approach to Real-time Spatiotemporal Prediction Systems for

Respiratory Syncytial Virus

Matthew J. Heaton

Department of Statistics, Brigham Young University, Provo, Utah, U.S.A

email: mheaton@stat.byu.edu

and

Celeste Ingersoll

Department of Statistics, Brigham Young University, Provo, Utah, U.S.A

email: celesteingersoll3@gmail.com

and

Candace Berrett

Department of Statistics, Brigham Young University, Provo, Utah, U.S.A

email: cberrett@stat.byu.edu

and

Brian Hartman

Department of Statistics, Brigham Young University, Provo, Utah, U.S.A

email: hartman@stat.byu.edu

and



Biometrics ?, 1–16

July 2020

Chantel Sloan

Department of Public Health, Brigham Young University, Provo, Utah, U.S.A

email: chantel.sloan@byu.edu

Summary: Respiratory Syncytial Virus (RSV) is a common cause of infant hospitalization and mortality. Un-

fortunately, there is no known cure for RSV but several vaccines are in various stages of clinical trials. Currently,

immunoprophylaxis is a preventative measure consisting of a series of monthly shots that should be administered at the

start, and throughout, peak RSV season. Thus, the successful implementation of immunoprophylaxis is contingent

upon understanding when outbreak seasons will begin, peak, and end. In this research we estimate the seasonal

epidemic curves of RSV using a spatially varying change point model. Further, using the fitted change point model,

we develop a historical matching algorithm to generate real time predictions of seasonal curves for future years.
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1. Introduction

Globally, respiratory syncytial virus (RSV) is a common cause of childhood acute lower

respiratory infection (ALRI) and a major cause of hospital admissions in young children(Nair

et al., 2013). About 45%, over 3.2 million,of hospital admissions and in-hospital deaths in

children less than 6 months old were due to RSV-ALRI in 2015 (Shi et al., 2017). Further,

children who are infected and survive have a much higher risk of developing longer term

respiratory health issues. Such severe respiratory outcomes from RSV infection occur most

often in children born preterm (Helfrich et al., 2015; Stagliano et al., 2015; Granbom et al.,

2016).

Most RSV-attributed deaths are in children with a pre-existing condition and/or were born

prematurely (Scheltema et al., 2017; Mazur et al., 2018). As RSV vaccine trials continue,

we remain reliant on immunoprophylaxis shots being given to infants who are premature or

predisposed to a severe RSV outcome (Hampp et al., 2011). Thus, to maximize the success

rate for immunoprophylaxis (and any other preventative measure), it is important to not

only understand when the RSV epidemic season will begin, peak, and end but also be able

to predict the seasonal curves in real time (i.e. as soon as data becomes available). However,

to date, very little is understood about the spatially varying dynamics of RSV year-to-year.

Noyola and Mandeville (2008), Walton et al. (2010) and Sloan et al. (2017) show that RSV

seasonality varies by climate and meteorogical conditions. In the contiguous US, studies by

Stensballe et al. (2003) and Pugh et al. (2019) suggest that RSV seasonality generally starts

in the south-east and moves north-west.

1.1 Data

The data motivating this research comes from the military data repository (MDR) of the

military health system which serves all active and retired duty military personnel along

with their dependents. The data contain birth dates, birth location and infection dates (for
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those infected with bronchiolitis) for all 50 states and US territories. However, for purposes

of this research we only consider data from the 48 contiguous states and the District of

Columbia. Inclusion criteria were children less than one year of age and born between January

1, 2003 and June 30, 2013. Subsequently, “controls” were defined as those children in the

cohort who were never diagnosed with bronchiolitis and “cases” were those children who were

diagnosed (using ICD-9 codes: 466.11, 466.19, 480.1, 0.79.6). Note that these ICD codes refer

to bronchiolitis and not RSV directly. It has been shown that most bronchiolitis cases are

RSV induced. Thus, in order to model and understand RSV, we will refer to bronchiolitis as

RSV and assume that these cases were a result of RSV, as most are.

While the MDR contains individual-level information on birth location and time as well

as infection information (for cases), such data is protected as personal health information.

Hence, for this research, we analyze aggregated data from the MDR to preserve patient

confidentiality. That is, for each state, the data analyzed here include the number of controls

(hereafter referred to as “susceptible”) and the number of infant RSV cases in any given

half month time period from 2004 to 2013 (time periods were defined as before the 15th and

after or on the 15th of any month).

Figure 1 shows the trends of the ratio of the number of cases to the number of controls over

time for a few selected states. While this figure displays data from 4 of 49 states analyzed in

this project, they stand as an example of the variability in seasonal trends across both time

and space. For example, in California, the peak proportion of cases in a season is around

0.02, but in Vermont the peak reaches close to 0.06. The data for California is consistent, but

the data for Vermont is very sporadic with many zero case counts. This is mostly likely due

to under-reporting, which occurs when the number of cases reported is less than the actual

amount. This can happen when patients self-diagnose and seek over-the-counter medication,

insurance claims are not filed, hospitals fail to report diagnosis, etc.
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[Figure 1 about here.]

In addition to variability across states, each season within a state also varies from season

to season. For example, Vermont has variable peaks, with some years peaking at significantly

higher proportions of cases than others. Some states and years have long, wide seasons with

low peak percentages, while others have short seasons with high peak percentages.

The variability of cases between states becomes more apparent in Figure 2. This map

shows the total number of cases in each state, ranging from 60 to 15879, from 2004 to 2013.

Given this raw data, it appears that Texas, California, Virginia, and North Carolina had

many more reported cases of RSV than other states (again, due to the amount of military

activity in these states). However, past research on RSV (Pugh et al., 2019) suggest that

RSV is present in all states across the country.

[Figure 2 about here.]

1.2 Statistical Challenges

The task of estimating and predicting seasonal trends of RSV in infants using the aggregated

MDR data faces several challenges including (but not limited to) space-time variation, big

data, and prediction in real time. Consider each challenge in turn.

The aggregated MDR data is correlated and varies across space and time. That is, we need

a model that will account for both the variability between states and variability across time.

By modeling correlation in the data we will be able to borrow information across states so

that states with little data can still have accurate seasonal RSV trend estimates. Further,

accounting for the correlation in the data will ensure that we obtain accurate measures of

uncertainty associated with our parameter estimates.

The MDR data covers 49 states over nine seasons, each season having 24 time periods,

resulting in 10800 correlated data points. Traditional approaches to modeling spatial and

temporal correlation results in a a 10800×10800 covariance matrix that is unreasonable to use
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computationally. While many methods have been proposed to circumvent this computational

challenge (see Heaton et al., 2019, for a review), many of the proposed methods are not

suitable for non-Gaussian data. As such, we plan to adopt the methods proposed in Hughes

and Haran (2013) by using basis functions suitable to capturing state-to-state variation in

bronchiolitis trends.

As mentioned, the success of immunoprophyalxis in preventing RSV hinges on the ap-

propriate timing of administration. As such, up-to-date predictions of the current seasonal

RSV curve is imperative for patient health. Given the nine seasons of data available in the

MDR, we want to predict RSV trends over the next cycle in each state as data become

available (i.e. as cases are reported). Traditionally, this is done via modeling spatial and

temporal correlation and calculating the conditional distribution of the future cycle given

the past cycle (referred to as the predictive distribution in Bayesian statistics or kriging in the

spatial literature, see Banerjee et al. 2014 or Cressie and Wikle 2015 for details on kriging

and Gelman et al. 2013 for details on predictive distributions). However, these standard

prediction methods require expensive simulations or computations. When predicting in real

time, these computations would have to be repeated each time new data became available.

Hence, for real-time predictions, we need a computationally feasible yet accurate approach.

1.3 Goals and Contributions

The goal of this research is to estimate the start, peak and end of RSV seasonality in every

state in the contiguous US over nine seasons from 2004 to 2013. Specifically, we use the

aggregated MDR data described above to estimate parameters of a spatially varying change

point seasonality curve with continuity constraints during the off-season. By borrowing

information from neighboring states, we are able to better estimate parameters in states with

few cases. Finally, we develop a real-time spatio-temporal RSV season prediction algorithm

based on probabilistic historical matching.
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The remainder of this paper is outlined as follows. In Section 2, we posit our spatially-

varying change point model as well as detail our historical matching algorithm. In Section

3, we use the data to fit our change point model, display the results and use the resulting

model fit to generate predictions for the 2013 RSV season. Finally, in Section 4 we draw

conclusions and highlight future areas of research.

2. Model

2.1 A Spatial Change Point Model

The goal of this analysis is to estimate probability curves that tell us the likelihood of

susceptible infants contracting RSV at different times within a cycle for every state. These

curves will be seasonal, meaning that throughout one cycle the probability of contracting

RSV rises, peaks, and falls. Let s = 1, 2, . . . , 49 denote the state and c = 1, 2, . . . , 9 denote

the cycle of RSV where a cycle is from July of a given year to June of the following year.

Finally, let t = 0, . . . , 23 denote the half month time interval (i.e. before the 15th or on and

after the 15th of each month as described in Section 1).

As a response variable, let Ysct denote the number of cases in state s, cycle c and time t and

Nsct denote the corresponding number of susceptibles (controls). As RSV infection is binary,

it follows that the number of RSV cases given the number of susceptible infants, follows a

binomial distribution such that

Ysct|Nsct ∼ Binomial(Nsct, ρsct) (1)

where ρsct ∈ (0, 1) is the probability of an RSV case occurring in state s, during cycle c,

at time interval t. In essence, ρsct for all s, c and t are the primary parameters of interest

in this study as this dictates the observed number of cases. As mentioned as a challenge in

Section 1, this parameter varies but is correlated over time. Further, the seasonal cycle (i.e.

the variation in ρsct for t = 1, . . . , 23) should be well-defined with a start, peak and end.
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In order to estimate an RSV probability curve with the appropriate seasonal shape, we

propose the following change point model given by

log
( ρsct

1− ρsct

)
=



βs if t < δsc1

βs + θsc(
t−δsc1

δsc2−δsc1 ) if δsc1 < t < δsc2

βs + θsc if δsc2 < t < δsc3

βs + θsc − θsc( t−δsc3
δsc4−δsc3 ) if δsc3 < t < δsc4

βs if t > δsc4

(2)

where βs is a baseline probability of RSV for each state, θsc > 0 is the maximum increase in

probability at the peak for each state and cycle and δsc = {δsc1, δsc2, δsc3, δsc4} are the change

point times for each curve. Notably, the logit of ρsct in (2) ensures ρsct ∈ (0, 1) as required.

For further clarity on what each parameter in the above change point model represent, Figure

3 displays the resulting seasonal curve where βs = 0, θsc = 0.9, δsc1 = 7, δsc2 = 11, δsc3 = 16,

and δsc4 = 20. Notably, each of these parameters are of scientific interest as they represent

different facets of a seasonal RSV curve. For example, θsc corresponds to the increase in RSV

probability at the peak of a season. Statistical inference for θsc can provide insight into which

states and cycles were particularly burdensome.

[Figure 3 about here.]

The seasonal parameters θsc and changepoints δsc = (δsc1, . . . , δsc4)
′ are allowed to vary by

season and state capturing the variability seen in Figure 1. Further, as discussed below, we

wish to correlate these parameters across space and time. In contrast, we allow the baseline

rate βs to be constant across cycles because off-season rates should be similar from cycle to

cycle. Further, this allows for the resulting curves to be continuous across cycle.

By definition, the change points are constrained so that 0 < δsc1 < · · · < δsc4 < 23. To

enforce this constraint we use the stick-breaking method similar to Pugh et al. (2019) and
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specify

δsc1 = ωsc1(23)

δsc2 = ωsc2[(1− ωsc1)(23)] + δsc1

δsc3 = ωsc3[(1− ωsc2)(1− ωsc1)(23)] + δsc2

δsc4 = ωsc4[(1− ωsc3)(1− ωsc2)(1− ωsc1)(23)] + δsc3

where ωsc = {ωsc1, ωsc2, ωsc3, ωsc4} ∈ (0, 1) correspond to the percentage of an entire seasonal

cycle (23 time points) spent in that particular regime. Further, this parameterization also

ensures that an entire cycle occurs within one season.

An inherent modeling challenge associated with this data is correlating the parameters in

(2) across state and cycle. While various approaches exist, we extend the approach developed

in Hughes and Haran (2013) to develop spatio-temporal basis functions for these parameters

that will also reduce the dimension of the parameter space and facilitate computation. In

our approach, let A denote a 441× 441 matrix that indicates space and time neighbors for

all states and cycles, where 49 × 9 = 441 is the total number of spatio-temporal points in

consideration. Under this spatio-temporal extension of Hughes and Haran (2013), we define

M to be the first Q eigenvectors of the matrix (I−J/441)A(I−J/441) where I is the identity

matrix and J is a matrix of ones. In this way, we reduce the dimension of space and time

in A into Q � 441 components where Q is chosen to capture the majority of space-time

variation as quantified by the associated eigenvalues.

The matrix M above corresponds to a basis that captures space-time variation across

states and cycles. As such, we model:

log

(
ωi

1− ωi

)
= γωi01 + Mγωi

(3)

log (θ) = γθ01 + Mγθ (4)

where γωi
represents a vector of coefficients for ωi = (ω11i, . . . , ωSCi)

′ and γθ represents a
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vector of coefficients for θ = (θ11, . . . , θSC)′. Note that the logit transform for ωi ensures

ωSCi ∈ (0, 1) for all s and c while the log transform ensures θsc > 0.

Finally, recall that the baseline rates βs are constant across cycle. Hence, as a modeling

strategy we define As that indicates only spatial neighbors for all states. Using the eigen-

decomposition as described above, we let Ms be the first Qs eigenvectors of (I−J/49)A(I−

J/49) where Qs < 49 and set

β = γβ01 + Msγβ (5)

where γβ represents a vector of basis coefficients. In this way, we are modeling on a lower

dimensional space which facilitates smoothing across regions.

The unknown parameters in the spatially varying change point model above are γωi0 and

γωi
for i = 1, 2, 3, 4 in Equation (3) as well as γθ0 and γθ in (4) and γβ0 and γβ in (5). In

general, our strategy for assigning prior distributions is to be vague, as we have little prior

information at our disposal. However, if more information were available, such information

could be incorporated in to a more informative prior. Specifically we assume all parameters

are independent and identically distributed N (0, 1) random variables. These priors may

appear informative due to the small variances. However, recall that each parameter is defined

on the logit scale such that a standard deviation of 1 is quite vague. Further, because the

basis functions in Ms and M are orthonormal, assuming prior independence among the

associated coefficients is justified.

2.2 Predicting Via Historical Matching

Beyond estimating seasonal curves of RSV, a main goal in this analysis is to predict the

seasonal curve of an upcoming season. As noted in the introduction, this can be done via

refitting the above model each time data becomes available. However, this is computationally

expensive and impractical for online predictions of the seasonal curve. Hence, here we

propose a practical historical matching algorithm that is computationally feasible while still
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producing accurate results. That is, to make these predictions, we propose to match future

data to past seasonal curves. Details are as follows.

Let ρs(c+1) represent all parameters associated with the seasonal curve in cycle c+1 and let

Ds(c+1) denote all data available in cycle c+ 1 for state s (which may be the empty set if no

data is observed or partial data from a season if only part of the season has been observed).

We assume, a priori, that Prob(ρs(c+1) = ρsc) = πsc for s = 1, . . . , S and c = 1, . . . , C such

that
∑

s,c πsc = 1 and πsc ∈ [0, 1]. In this case, the posterior distribution for ρs(c+1) is given

by

Prob(ρs(c+1) = ρsc) ∝ L(Ds(c+1) | ρsc)πsc (6)

where L(·) denotes the binomial likelihood of data Dc+1 if Dc+1 6= ∅ and L(·) = 1 otherwise.

The above historical matching approach allows us to probabilistically match a future curve

ρs(c+1) to past observed curves ρsc as data Dc+1 becomes available. Further, the computation

for this historical matching is substantially easier to implement than fully refitting the above

model. That is, if Ψ denotes all parameters from the model in Section 2.1, given MCMC

draws Ψ(1), . . . ,Ψ(N) from the posterior distribution, the algorithm to obtain posterior draws

of ρs(c+1) proceeds as follows for each i = 1, . . . , N :

(1) Using the available data, calculate the likelihood of Ds(c+1) under each state-cycle com-

bination such that,

L(Ds(c+1)|ρsc) =
∏
t

(
Ns,c+1,t

Ys,c+1,t

)
(ρ

(i)
sct)

Ys,c+1,t(1− ρ(i)sct)Ns,c+1,t−Ys,c+1,t . (7)

(2) Calculate posterior probabilities using the likelihood and prior as in (6).

(3) Randomly sample a historical match based on the posterior probabilities.

The algorithm results in N draws of ρs(c+1) that can be used for posterior analysis.

We make predictions using two different priors: (1) uniform prior and (2) spatial prior.

The uniform prior gives each state and cycle an equal probability of being matched to the

data. That is, under the uniform prior πsc = 1/(S × C). Whereas, the spatial prior allows
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only states neighboring the predicted state to be matched. That is, πsc 6= 0 only for those

states neighboring state s and πsc is uniform across the spatial neighbors.

3. Application to RSV Data

3.1 Model Inference

Figure 4 shows posterior mean estimates of the probability of contracting RSV (see Equation

(2)) during the 2007-2008 cycle. While our estimates reveal that every season is different

for each state, there are a few commonalities between seasons that are demonstrated by

the 2007-2008 cycle which we wish to highlight. Primarily, at the beginning of the cycle,

probabilities first rise in the south-east states (e.g. between Louisiana and Florida). Over

the next two months, RSV moves through the Midwest and up the east coast. Finally, rates

in the northwest finally hit their respective maximum in early February before starting to

decline.

[Figure 4 about here.]

While the above south-east to north-west movement is fairly consistent from year to year,

some states have highly variable seasons year over year. Figure 5 shows the posterior mean

probability of contracting RSV in California, Nebraska, Texas, and Utah along with 95%

credible interval bands. In California, RSV seasonality is consistent where the same relatively

mild RSV season repeats every year, with peak probabilities extending no higher than 2%.

In Nebraska (top right panel), we see a different RSV season almost every year with some

being more severe than others. In various states, RSV seasonality is short but strong (e.g.

Utah) whereas other states have longer seasons with wider peaks (e.g. Texas). In all four

plots, we see very little uncertainty in the estimates.

[Figure 5 about here.]

Each season, RSV affects different areas in different ways. Figure 6 map peak probabilities
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from four different seasonal cycles. In the 2005-2006 cycle, RSV had the highest impact

in the Northern Midwest with an unusually bad season in Wisconsin. Two seasons later

(2007-2008), the peak of RSV infection seems to have been observed further south. In the

2011-2012 season, RSV again impacted the south the most, but this season was still relatively

light compared to the peak rate in other seasons.

[Figure 6 about here.]

3.2 Prediction Via Historical Matching

Each of Figures 4-6 emphasize the importance of modeling season-to-season and state-to-

state variablity in RSV seasonality. Due to this variability, health care professionals may not

be able to base timing of treatments of immunoprophylaxis (or other preventative/counter

measures) simply on past seasons of RSV in their area. Thus, predicting the timing of future

RSV seasons is incredibly valuable for immunoprophylaxis administration.

To demonstrate the historical matching prediction algorithm, we refit the model from

Section 2.1 with the last cycle of data held out for prediction validation. For this cross-

validation study, we make predictions of upcoming RSV seasons by matching future data to

past seasonal curves using two different priors for {πsc : s = 1, . . . , S; c = 1, . . . , C}: (1) a

uniform prior and (2) a spatial prior. The uniform prior gives each cycle and state equal prob-

ability of being matched to any state and any cycle (mathematically πρsc = (SC)−1) whereas

the spatial prior only allows states neighboring the predicted state to match (mathematically

πρsc = 0 for all s′ 6∈ Ns where Ns is the set of neighbors of state s).

The results of predicting the last season are displayed in Figure 7 which compare predicted

curves using a uniform prior and a spatial prior for three states side by side with the true

data points overlaid in black. Notably, these online predictions only use data up to and

including the time of prediction. For example, at time t = 5, the associated predictions only

use data from time point 1, . . . , 5.
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[Figure 7 about here.]

In both prior cases, the predicted RSV seasonal curves change and improve as more data

is observed. In the uniform case, the predicted season for Washington remains low until time

period t = 10 after which the predicted curves start to change significantly as more data is

observed and the predicted curves begin to accurately represent the overall season. When

using a spatial prior, the predicted curves shift toward to the true season much sooner. As

seen with Georgia, the predictions using the uniform prior take much more data to estimate

the true seasonal curve. The spatial prior helps the predicted curves move closer to the true

season with fewer known data points.

[Figure 8 about here.]

The uncertainty we have regarding these estimates is shown in Figure 8. We calculate 95%

uncertainty bands for the predicted RSV curves using the MCMC draws. In many cases,

the uncertainty bands largely overlap with curves from neighboring time periods because

the estimated curves are so similar. As a result, we only show the estimated curves with

uncertainty bands for three time periods that have relatively different predictions within a

season. In most cases, the the uncertainty bands are thinner when a spatial prior is used.

4. Conclusions

In this research we estimated the seasonality of RSV over nine seasons using a spatially

varying change point model with continuity constraints during the off-season. Using this

model, we estimated the start, peak, and end of RSV seasonality for every state in the

contiguous United States from 2004 to 2013. By borrowing information from neighboring

states using spatial correlation, we were better able to predict RSV season in states with few

and/or under-reported cases. In addition, correlating the model parameters across space and
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time allowed us to capture the variability of RSV seasons between and within states while

appropriately accounting for uncertainty.

Using the fitted change point model, we developed a computationally practical historical

matching algorithm for online predictions of RSV season. This algorithm matches future data

to past seasonal curves to generate real time predictions of RSV seasonal curves for future

years with out having to refit the model each time new data becomes available. We made

these predictions under both a uniform prior and a spatial prior, and concluded that a spatial

prior produces more accurate estimates of RSV seasonal curves with less available data. We

can successfully identify peak times and rates of RSV in every state of the contiguous US.

We found that this model successfully captured the variability of RSV seasons within and

between states. Although every year differs, a common trend found year over year is RSV

season starting strong in the South and moving through the Midwest with lighter seasons on

the coasts. Some states, like California, have consistent RSV seasonal patterns, while other

states, like Louisiana, have vastly different seasons each year. Using this model and historical

matching, we also predict which states will likely have the worst RSV season by estimating

peak probabilities of getting RSV. All this information about RSV seasons can support

health care professionals in their efforts to administer treatments of immunoprophylaxis or

other preventative treatments effectively.

In this current model, we force each season to have a unimodal curve, but in reality some

seasonal curves may be bimodal. While the unimodal assumption is likely true for RSV due

to the regular seasonality, if these methods were applied to some other disease then possible

multimodality may need to be accounted for. However, we leave the multimodal extension

of these models to future research.

One shortcoming of the proposed historical matching algorithm is if historical data is

scarce. Certainly, for this application, we had 8 years of previous data in 49 states (392 total
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RSV cycles) which is sufficient to observe a wide variety of RSV seasonal curves. However,

if less data were available then less historical curves would be available to match to. Hence,

alternative prediction strategies beyond the historical matching algorithm used here may be

a useful avenue for future research.

Overall, the benefits of this research on understanding and predicting RSV seasonality is

in determining how and when to effectively administer preventative measures. Health care

providers can use these methods and predictions to continually evaluate how RSV is behaving

in their respective regions and best serve infants and families around them.
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Figure 1: Ratio of the number of cases to the number of controls over time for California,
Iowa, Texas, and Vermont
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Figure 2: Total number of cases over all years in each state.
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Figure 3: Example seasonality curve for the probability, ρsct, of contracting RSV in cycle c
for state s.
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Figure 4: Progression of the RSV season across the contiguous United States from July
2007 to June 2008.
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Figure 5: Fitted probability curves with 95% credible bands for RSV in California, Nebraska,
Utah, and Texas.
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Figure 6: Peak probabilities of RSV infection in each state from four selected cycles.
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Figure 7: Online predictions via historical matching for Washington, Texas, and Georgia
using both uniform and spatial priors.
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Figure 8: Uncertainty bands on predicted RSV curves for Washington, Texas, and Georgia
at three time periods.


