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Abstract

The accurate prediction of long-term care insurance (LTCI) mortality, lapse, and claim rates is essen-
tial when making informed pricing and risk management decisions. Unfortunately, academic literature on
the subject is sparse and industry practice is limited by software and time constraints. In this paper we
review current LTCI industry modeling methodology which is typically Poisson regression with covariate
banding/modification and stepwise variable selection. We test the claim that covariate banding improves
predictive accuracy, examine the potential downfalls of stepwise selection, and contend that the assump-
tions required for Poisson regression are not appropriate for LTCI data. We propose several alternative
models specifically tailored towards count responses with an excess of zeros and overdispersion. Using
data from a large LTCI provider, we evaluate the predictive capacity of random forests and generalized
linear and additive models with zero-inflated Poisson, negative binomial, and Tweedie errors. These
alternatives are compared to previously developed Poisson regression models.

Our study confirms variable modification is unnecessary at best and automatic stepwise model selec-
tion is dangerous. After demonstrating severe over-prediction of LTCI mortality and lapse rates under
the Poisson assumption, we show that a Tweedie GLM enables much more accurate predictions. Our
Tweedie regression models improve average predictive accuracy (measured by several prediction error
statistics) over Poisson regression models by as much as four times for mortality rates and 17 times for
lapse rates.
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1 Introduction and Literature Review

Private long-term care insurance (LTCI) policies in the United States are designed to pay a benefit when,
due to disability, the policyholder can no longer perform routine activities necessary for their health and
well-being without in-home assistance or institutional care (Brown and Finkelstein, 2009). These long-term
contracts share features of both health and life insurance. They provide assistance with medical expenses
while also being exposed to significant lapse and mortality risk which results in unique pricing assumptions.

Given the importance of the accurate prediction of mortality, lapse, and claim rates in pricing and risk
management of LTCI, it is surprising that little research has been dedicated to the subject. Studies tend
to discuss large scale macro-economic issues, behavioral economics, personal finance, and a variety of public
health concerns (see examples by Brown and Finkelstein (2009), Smoluk (2009), and Peter Zweifel (1998)).
Research modeling the lapse, claim, and death rates necessary for pricing long-term care contracts exists but
is limited both data and scope. Our methods address these shortcomings by applying a variety of predictive
modeling techniques to real US LTCI data provided by a major insurer.

We draw upon various sources to construct our predictive models. First, we review literature that
attempts to model critical LTCI rates indirectly by estimating their values using related public health data.
Next, we turn to more recent research with real LTCI data from private insurers or survey data from a
population of LTCI policyholders. Finally, we conclude by reviewing industry practices as documented in
an unpublished report by the University of Connecticut Goldenson Actuarial Research Center (2012) using
13 years of LTCI data.

Several use public health data to indirectly model LTCI rates. Pritchard (2006) constructs a continuous-
time, multiple-state model using the U.S. National Long-Term Care Study from 1982, 1984, 1989, and 1994
to describe the disability process of aging and suggests adapting this model to price specific LTCI products.
Meiners and Trapnell (1984) use traditional actuarial methods of the era (specified in an unpublished report)
to provide premium estimates at the intersections of several important variables for prototype LTCI policies
using data from the National Nursing Home Discharge Survey of 1976. These studies, while thorough and
rigorous, do not directly model the critical rates necessary for fair and accurate pricing. Utilizing public
health data of this nature predicts claims only by proxy, provides no information on lapse risk, and mortality
and claim rates may not be accurate since the data does not represent the population of LTCI policyholders.
Private long-term care insurance policyholders are likely to be wealthier than the median American and their
risk profiles may differ as well (Brown and Finkelstein, 2009).

More recently, several papers focus on directly modeling lapsation and mortality rates for LTCI. Pinquet
et al. (2011) builds a proportional hazards model for lapsation using data from a portfolio of individual
Spanish LTCI contracts. The model includes the covariates gender, year of risk exposure and the logarithm
of a health bonus-malus coefficient and demonstrates a link between age and lapse (lapse rate decreases as age
increases). The authors conclude there is a connection between lack of knowledge of insurance products and
higher lapse rates. Konetzka and Luo (2011) also presents models for lapsation, choosing logistic regression
to describe the probability of lapsation for respondents who report having private LTCI in the 1996-2006
Health and Retirement Studies. The paper concludes that financial variables play more of a role in predicting
lapsation than health status. Mortality rates as a function of age of claim occurrence and duration of care for
heavy claimants in French LTCI portfolios are modeled in Tomas and Planchet (2013). The author utilizes
a locally adaptive smoothing pointwise method (using the intersection of confidence intervals rule) and also
a global method using local bandwidth correction factors.

We look to extend these papers in several important directions. We choose not to focus our attention
on a specified subset of LTCI policyholders but rather a broad sample including all in-force policies for an
insurance provider over more than a decade. In addition to our sample being more diverse, our dataset is
much larger (over 69 million exposure units compared to thousands) than previous studies. This large sample
size requires a unique approach to model selection. Residual plots are impractical and the calculation of
information criteria strain computing resources for some likelihood functions (e.g. Tweedie). Instead we use
several prediction error statistics (median absolute prediction error, median squared prediction error, and
the equivalents for means) as measures for model comparison. We also compare the merits/disadvantages
of a much broader range of models than other papers. Finally, since many publications on LTCI modeling
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are European, it is worth noting that European LTCI policies often have smaller benefits and premiums
than their U.S. counterparts and are frequently purchased only as a supplement to state provided care and
insurance (Pinquet et al., 2011) making them difficult to compare directly.

Due to their specific nature and/or dissimilarity of data sources to our own, the current body of published
research on LTCI predictive modeling cannot serve as the main reference for modeling techniques applied
in our paper. Instead, we turn primarily to LTCI industry expertise. We are fortunate to have access to a
currently unpublished 2012 report by the University of Connecticut Goldenson Actuarial Research Center
using 13 years of aggregated data provided by a major LTCI provider. This report is the result of a joint
effort between the University researchers, a major LTCI provider, and a major actuarial consultancy and is a
fair representation of current predictive modeling practices in the LTCI industry. The Goldenson researchers
and industry actuaries focus their efforts on developing Poisson regression models with an offset for exposure
in months to predict mortality, lapse, and claim rates. Covariates are selected using automated stepwise
routines and are often modified (factor grouping) in an effort to achieve improved model fit and computational
performance. We contend that the assumptions required for Poisson regression are not appropriate in the
case of LTCI data and disagree with the reliance on covariate modification as a means to achieve better fit.

Our study uses the Goldenson Center models as a baseline and compares their predictive qualities to
several GLM, GAM, and non-parametric models better suited for the data. We focus on developing models
for lapse and mortality rates. This is not strictly disadvantageous since lapse and mortality are both the most
rich and sparse response variables in terms of frequency of occurrences respectively. Because of the polar
nature of these two response variables, we are able to dedicate sufficient time to exploring the most extreme
cases an actuary would encounter when building pricing models for LTCI. Furthermore, given the similarities
(excess zeros and overdispersion) between the claims response and mortality and lapsation, we believe the
approach outlined in this paper could be used to produce superior claims rate models. The majority of
models developed in this paper are GLMs and GAMs known to perform well when applied to responses
with an excess of zeros and significant overdispersion including zero-inflated Poisson, negative binomial, and
Tweedie regression models. Finally we experiment with predictive models using random forests.

The remainder of this paper is organized as follows, Section 2 describes the data used in this study,
Section 3 details and critiques the current predictive modeling practices in the LTCI industry today, Section
4 describes the modeling methods applied by our study, Section 5 outlines our results and compares our
methods to contemporary industry practice, and section 6 provides our conclusions.

2 Data and Data Handling

A large dataset containing 13 years of aggregated LTCI policy information was provided by a major U.S. LTCI
provider. The data is aggregated by rating factor and exposure base to make computations manageable. The
data contains approximately 69 million policy-in-force months of mortality and lapse exposure and includes
two response variables of interest to our predictive modeling effort; mortality count (ymort i) and lapse count
(ylapse i).

These discrete response variables are easily converted to the desired continuous rate variables examined
in this study through either the inclusion of an exposure offset (tmort i and tlapse i) or by simply dividing the
observed count by its associated exposure to create a rate variable (rmort i and rlapse i).

Generally, the proportion of LTCI policyholders who die, lapse, or go on claim in any given time period
is very low. As such the response variables tend to have an excess of zero observed counts. Our mortality
and lapse count response variables are extremely sparse with 99.76% and 78.08% of exposures having zero
counts respectively. This excess of zeros is problematic as it often invalidates common modeling assumptions
such as heterogeneity. Section 3.4.1 of this paper explains this problem and its impact on our modeling
decisions in more detail. Additionally, non-zero mortality and lapse rates appear to belong to a right skewed
distribution (see Figure 1 section 4.3.2), albeit with apparent outliers in the tail.

In addition to the response variables, the dataset contains 22 predictor variables (covariates) and 2
offset variables (described in Table 3). Of the available covariates, 16 are categorical covariates describing
either technical features of the policy or attributes of the policyholders. While there are a total of four
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continuous covariates available, the variables duration, attained age, and issue age form a linear combination
and therefore only two of the three can be included as fixed effects. For computational efficiency we grouped
the exposures by these covariates creating approximately 17,000 or 600,000 groups with non zero exposures
for mortality and lapse respectively.

Incidence Year* Year of exposure, incidence year of decrement
Issue Year* Year of issue
Stat Co Statutory company
Gender Gender
Ported Indicates if the policyholder can continue coverage after leaving their employer
Duration* Number of years since issue as of the exposure period, capped at 25
Attained Age* Attained age as of the exposure period
Issue Age* Age at issue
Coverage Type of coverage (facility only, professional home care, total home care)
EP Elimination period
Benefit Period Benefit period
Benefit Amount Monthly facility benefit amount
Funding Funding type (employer funded, employer contributed, voluntary, etc...)
Relationship Relationship to employee
Policy Policy form group
State Issue state
Inflation Inflation protection type
Stop Bill Indicates policy is in a status in which they are no longer billed
Home Pct Percentage of the monthly facility benefit that is available for home care
Premiums* Total premium of exposures
Premium Mode The frequency at which premiums are required to be paid
In Mode Indicator Indicates whether a premium is due in the next month or not
Lapse Exposure† Reporting lag adjusted total insureds exposed to lapse in the exposure period
Mortality Exposure† Reporting lag adjusted total insureds exposed to death in the exposure period
*indicates continuous or integer variable, all others are categorical
†indicates continuous exposure variable

Table 1: Description of Covariates and Offset Variables

3 Current LTCI Industry Methodology

3.1 Poisson Regression with Offset

The authors of the Goldenson Center Report utilize generalized linear models with a Poisson error structure
(Poisson regression) and a log link function to model critical rates used for pricing. Typically used to model
count data, Poisson regression and other GLMs have been used in the actuarial profession since the early
1980s and have a wide variety of applications (Haberman and Renshaw, 1996). Since it is reasonable to
assume the count of claims, lapses, and deaths are proportional to the time a policy is exposed to risk, the
model includes an offset variable for exposure. In the case of this study, the offset variable ln(t) is defined
as policy in force time in months and its inclusion allows us to make inferences about our response variables
as rates (E[Yi/t]).

The validity of results derived from Poisson regression depends on three basic assumptions; perfect
homogeneity throughout the sample (the rate parameter is the same for each unit of exposure with identical
explanatory variables), each unit of exposure generates events (e.g. claims, lapses, or deaths) in accordance
with a Poisson process, and the incidence of observing an event is mutually independent for all observations
(Brockman and Wright, 1992). While some actuarial applications may adequately meet these assumptions,
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modeling critical LTCI rates under these assumptions can be problematic as we will show in section 3.4.

3.2 Variable Selection and Models

To select covariates to include in their models, the Goldenson Center researchers used a combination of
subject matter expertise and stepwise regression routines. P-values from Chi-Squared tests of the model
parameters were used as variable selection criteria. Goodness-of-fit was evaluated by assessing the A/E ratio
(actual mortality or lapse rate divided by their respective predicted/expected rates) at various values of the
covariates. For example, the A/E ratio for mortality models was evaluated for every five-year grouping of
attained age and duration, for males and females, and various intersections of attained age, duration, and
gender. The A/E ratio was also calculated for the entire model. The Goldenson Researchers did not select
training and test samples to evaluate out of sample predictions neither did they perform any cross validation,
but rather fit and evaluated their models on the entire sample.

After fitting Poisson regression models for each critical rate, the Goldenson Center researchers employed
a variable modification scheme at the suggestion of the LTCI insurance provider. The researchers suggest
that some ranges of values for particular categorical covariates vary identically with respect to the response.
These ranges of values were grouped by redefining them as a single factor level. The report states that
this factor grouping improved statistical significance of associated parameters and enhanced computational
performance. Continuous covariates were also modified to compensate for lack of exposure at “tail values”.
For example, there may be few observations for policyholders of attained age greater than 90 which has
the potential to affect parameter significance and model convergence. Under the covariate modification
scheme suggested by the Goldenson report all attained age values greater than 90 would be set to 90.
Variable modification/banding is perhaps more common in insurance than other fields due to its usage in
methodologies that predate sophisticated statistical techniques and also concerns about computing power in
the early 90s (Brockman and Wright, 1992). The practice remains common due to popular industry software
which bands variables automatically.

Table 2 presents the model formulas developed in the Goldenson report. A check mark indicates that
the variable was included in the model while a check mark with an asterisk indicates the variable underwent
some form of modification. Notice that many more variables are included in the lapse rate model and that
few of the variables were banded.
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Goldenson Center LTCI Poisson Regression Models

Response & Covariates
Mortality Rate

Model
Lapse Rate

Model

Response ymort i ylapse i
Incidence Year

Issue Year
Stat Co
Gender X
Ported X

Duration X X
Attained Age X*

Issue Age X
Coverage X

EP
Benefit Period X*

Benefit Amount X*
Funding X

Relationship X
Policy
State

Inflation X*
Stop Bill

Home Pct X
Premiums

Premium Mode X
In Mode Indicator X

Exposure tmort i tlapse i

Table 2: Goldenson Center LTCI Poisson Regression Models

3.3 Critique of Poisson Regression and Common Variable Modification and
Selection Techniques as Applied to LTCI Claims, Mortality, and Lapsation
Data

We contend that for LTCI rate data the Poisson assumption (outcomes being generated by a Poisson pro-
cess) is violated, Poisson regression models fail to address overdispersion and heterogeneity, and we highlight
several properties of the Poisson distribution which make it less than ideal for these applications. Addition-
ally, we provide a critique of variable modification schemes and stepwise regression, both common industry
practices.

3.3.1 Violation of Assumptions required for Poisson Regression

For both response variables we observe an over-abundance of zero counts; more than would be expected for
any rate parameter in a Poisson distribution that would also be likely to produce the observed positive counts.
This suggests that our responses are not generated from a homogeneous Poisson process; thereby violating
the first and second assumptions necessary for Poisson regression. Our response variables are indicative
of unobserved population heterogeneity meaning it is likely that our data contains several sub-populations.
Some of these sub-populations appear to have a very high probability of not experiencing a lapse or mortality
while others may indeed behave in a Poisson-like manner. The heavy positive skewness of the distribution of
our response variables is a major influence in the selection of error structures for models developed in section
4.
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Overdispersion of count data is common in many sciences (Böhning et al., 1997) and before developing
new models, we test the baseline Poisson models for its presence. The Lagrange Multiplier test can be used
to test the Poisson dispersion against an alternative model (in our case negative binomial) (Greene, 1998).
Its null hypothesis assumes equality between Poisson and alternative model dispersion and the test statistic
is distributed χ2

1. Table 3 contains the results of the Lagrange Multiplier test when applied to our baseline
Poisson regression models for mortality and lapse rates. The models are fit to successively larger samples by
incidence year per our methodology in section 4.3.1.

Mortality Rate Model Lapse Rate Model
Subset p-value p-value

2000-2002 0.0008 0.0000
2000-2003 0.0364 0.0000
2000-2004 0.0829 0.0000
2000-2005 0.1742 0.0000
2000-2006 0.1496 0.0000
2000-2007 0.0446 0.0000
2000-2008 0.1381 0.0000
2000-2009 0.0675 0.0000
2000-2010 0.1214 0.0000
2000-2011 0.0958 0.0000
2000-2012 0.1467 0.0000

Table 3: Lagrange Multiplier Test for Overdispersion in Baseline Poisson Models

With 95% confidence, 3 out of 11 mortality rate and all lapse rate models tested show evidence of overdis-
persion. The Lagrange Multiplier test reveals moderate to strong evidence for overdispersion in our baseline
mortality rate models and extremely strong evidence for overdispersion in the baseline lapse rate models.
Since overdispersion can be viewed as resulting from neglected unobserved heterogeneity, the homogeneity
assumption necessary for Poisson regression is violated. Our proposed methods avoid the shortcomings of
the single parameter Poisson error structure by utilizing more robust multi-parameter models designed to
accommodate overdispersion and heterogeneity.

Another major drawback of using Poisson regression to make inferences about rates arises because there
is a positive probability for every integer yi. Since yi can take any value from zero to infinity, when a finite
and constant exposure variable t is included in a Poisson regression model there is some positive probability
that the predicted outcome (in our case count of lapses or mortalities per observation) will exceed the number
of exposures. Consequently, a Poisson regression model may predict rates in excess of 100%. This is clearly
problematic for our application in LTCI as it implies it is possible to observe more claims, mortalities,
or lapses than there are policyholders in a given exposure period. Indeed, inspection of predicted results
generated from Poisson regression models on our dataset reveal several predicted rates in excess of 100% at
times exceeding 3,000%. Ideally an error structure should be chosen that provides a more restrictive bound
(0%, 100%) for the range of possible responses or at least minimizes the probability a predicted rate will
exceed 100%.

3.3.2 Shortcomings of Variable Modification

In addition to the aforementioned problems arising from the application of Poisson regression to LTCI rate
data we also warn against the common industry practices of variable modification and over reliance on
stepwise regression routines.

Grouping factor (categorical) variables by combining several factor levels into fewer but larger groups
can improve processing times for model estimation. However, provided researchers have access to sufficient
computing resources, use appropriate sample sizes, and have efficient algorithms, concerns about processing
time should not dictate model formulation. Instead of improving model fit, excessive removing or grouping of
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factors serves to mask within-cell variation from individual exposures and variation between rating factors is
lost completely (Murphy et al., 2000). Though goodness-of-fit statistics and diagnostic plots may appear to
be better, this is not because the model more accurately describes the variance in the response. The improved
fit is an illusion because some observed variance has been intentionally removed, effectively making the data
a better fit for the model. Murphy et al. (2000) provides an extreme example of the data being reduced
to one point, the mean, in which case we are left with a perfect fitting model. Grouping factor levels and
modifying numeric variables also limits the ability of a model to make reliable inferences using out-of-sample
data making it particularly poor practice for predictive modeling. In section 5 we compare Poisson regression
models with substantial variable modification to those with the same covariates that have not undergone
modification and confirm that the results from the modified models show no substantial improvement in
predictive capacity.

3.3.3 Problems with Stepwise Regression

In the early 1990s, British actuaries began to investigate the application of GLMs in ratemaking (Brockman
and Wright, 1992; Renshaw, 1994; Haberman and Renshaw, 1996). During this time, computing power had
developed sufficiently to enable automated variable selection routines such as stepwise regression. Due to
their ease of use, and the appeal of quickly finding a “good” subset of covariates these methods became
popular in many sciences (Huberty, 1989). Since then, software packages such as SAS and SPSS have offered
stepwise variable selection routines for linear and generalized linear models and their utilization remains
commonplace. Despite their popularity, stepwise routines have undergone a great deal of scrutiny. Huberty
(1989) outlined several major flaws of stepwise routines. More recently, simulation studies and other analysis
have revealed further problems with stepwise algorithms including bias in parameter estimation, problems
with consistency and interpretation, and the limitations of deciding on a single “best” model (Whittingham
et al., 2006).

Whittingham et al. (2006) performs a simple simulation using stepwise selection to choose between
a simple linear regression model with one covariate and an intercept only model. The study concludes
that the individual estimates of the parameter associated with the covariate are biased, either towards an
underestimate of zero when the parameter was not deemed significant or values in excess of the true parameter
if tests were deemed significant.

Consistency and interpretation of models discovered by stepwise regression are also problematic. Both
the number of parameters and the order of parameter entry into or removal from a model influence the model
selected by a stepwise algorithm. These factors, though unrelated to the underlying process generating the
response, can lead to significantly different models being chosen. Apparent quality of a given model selected
by stepwise regression is often inflated since the final model is a result of many hypothesis tests thereby
increasing the probability of Type I errors (Wilkinson, 1979). Sometimes referred to as Freedman’s Paradox,
this result indicates that stepwise algorithms tend to produce models with an inflated R2 value and in which
too many parameters appear significant (Lukacs et al., 2010). These factors culminate in misinterpretation
of the resultant model and potential overfitting.

Additionally, many scientists take issue with the philosophy of stepwise selection which aims to select
a single best model derived from a particular sample. This methodology can cause scientists to be overly
confident in a model, not explore similarly fitting alternatives, and not adequately express uncertainty in
experimental results (Whittingham et al., 2006).

3.3.4 Overdispersion, Variable Modification, & Stepwise Regression: A Problematic Combi-
nation

Additionally, we address a concern particular to stepwise selection coupled with Poisson overdispersion.
When fitting a Poisson regression model in the presence of overdispersion, variance is inevitably underesti-
mated. This in turn deflates standard errors (already potentially unreliable given a sparse response (Murphy
et al., 2000)) and inflated test statistics for model parameters. Consequently, covariates with little to no
effect on the response will appear significant. Coupled with Freedman’s Paradox, this stepwise selection
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and overdispersion could be disastrous; producing models impossible to interpret and increasing the risk
of overfitting. The Poisson regression model for lapse rate created in the Goldenson report is a potential
product of this phenomena. This model includes 12 covariates where as our best Tweedie GLM and GAM
models only include 4 yet predict out of sample lapse rates with approximately 2.6 - 17.3 times the accuracy
depending on the statistic of interest.

Finally, if variable modification is carried out before variable selection a similar problem could arise. As
discussed in the preceding subsection, in an attempt to acquire a “better fitting” model, a researcher who
performs factor grouping and banding can significantly reduce variation between rating factors. This in turn
will drive down standard errors for model parameters and inflate test statistics. It is likely that if a stepwise
variable selection routine is applied the bias in parameter estimation described by Whittingham et al. (2006)
will be further exaggerated. Again, the end result is likely an over-specified and difficult to interpret model.

Considering the convincing body of work decidedly opposed to variable modification and stepwise routines,
the effects of overdispersion, and our access to industry expertise, we forgo the method in this paper. We
instead start with a subset of covariates informed by LTCI actuaries and our own experience and then add
or remove variables based on exploratory analysis of the data. This methodology is more consistent with
actuarial best practices for predictive modeling in LTCI and other areas.

4 Methods

4.1 Parametric Models with Error Structures Suited for Overdispersion Over-
Abundance of Zeros

In this section we present several popular GLM error structures for modeling overdispersed count data with
an over-abundance of zeros including the negative binomial, zero-inflated Poisson, and Tweedie models. We
also present two alternative methods of predictive modeling we will apply to our dataset, generalized additive
models (GAMs) and the non-parametric statistical learning technique of random forests.

Notably absent from the list of models, and perhaps the most common approach for handling overdis-
persed count data, is the quasi-likelihood approach under Poisson like assumptions (“quasi-Poisson”) (Ver Hoef
and Boveng, 2007). While the quasi-Poisson model is more robust than a traditional Poisson regression model
in that it allows the independent estimation of a variance parameter, it is identical in respect to the estimated
mean. Due to this similarity, the quasi-Poisson regression model will produce the same predicted values (with
respect to the same set of covariates) as the traditional Poisson model, albeit with different standard errors
for the intercept and regression coefficients. Since our goal is to find the most precise predicted response
values, we exclude the quasi-Poisson regression model from our analysis due to redundancy.

4.1.1 Strictly Discrete Parametric Regression Models (Negative Binomial & Zero-Inflated
Poisson)

In addition to Poisson regression models, we test two popular alternatives for overdispersed count data;
negative binomial regression and zero-inflated Poisson regression.

4.1.2 Generalized Additive Models

The GAM is a further generalization of the GLM where the linear form of the model g(µ) = β0 + x1β1 +
x2β2 + ... + xpβp is replaced by the sum of smooth functions g(µ) = β0 + s1(x1) + s2(x1) + ... + sp(xp)
where each si(·) is an unspecified smoothing function and g(·) is the link function (Hastie et al., 1986). The
modeler has the option of including non-smoothed strictly linear terms in the model as they would with a
GLM (ex. xiβi) and in fact this is the only option for categorical covariates. Additive models explore non-
linear covariate effects efficiently; eliminating the trial and error of manually selecting complex interactions
and polynomial terms.

In this paper, we evaluate the predictive power of GAMs with both Poisson and Tweedie errors to compare
our baseline (Poisson) and best performing (Tweedie) GLMs with the addition of non-linear covariate effects.
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Though there are many options available for smoothing methods, we choose cubic regression splines for their
relative computational efficiency given the size of our dataset.

4.1.3 Tweedie Regression

The Tweedie family of distributions are exponential dispersion models which include both discrete distribu-
tions such as the Poisson and continuous distributions such as the normal and gamma. The Tweedie family
also includes a set of compound Poisson-gamma distributions described by Mildenhall (1999) as having a
“Poisson frequency component and gamma severity component.” A convenient, albeit simplified, parame-
terization of the Tweedie distribution is given by Shono (2008) where µ is the location parameter, σ2 is the
diffusion parameter, and p is the power parameter.

f(y|µ, σ2, p) = a(y|σ2, p)e−
1
2σ d(y|µ,p)

The relationship between the mean and variance of the Tweedie distribution is described by the following,

V[Y ] = σ2E[Y ]p = σ2µp

This study focuses on the case where 1 < p < 2 which corresponds to a compound Poisson-gamma distribution
(a member of the exponential family) which allows modeling within the GLM framework.

Tweedie regression is common in many sciences and in actuarial science is often used to develop pure
premium models (see Jørgensen and Paes De Souza (1994), Gordon K. Smyth (2002)). The assumption in
this case is that claims arrive according to a Poisson distribution while average severity is gamma distributed
(Jørgensen and Paes De Souza, 1994). The fact that the compound Poisson-gamma distribution has a positive
point mass at zero makes its application in pure premium modeling possible and also is essential for our
application to LTCI rate data due to the abundance of rates equal to zero.

We employ the compound Poisson-gamma Tweedie models to LTCI rate data under the assumption
that deaths and lapses arrive according to a Poisson process while their exposure periods in months follow
a gamma distribution. In this context we model mortality and lapse rates directly (rmort i or rlapse i per
our notation) rather than through the inclusion of an offset variable as in the other strictly discrete models
discussed earlier in this section.

Prior to fitting a Tweedie regression model it is necessary to first estimate the power parameter p. We
accomplish this estimation using the R package “tweedie” which contains a useful algorithm for calculating
this parameter using the method of maximum likelihood estimation conditional on the same covariates, link
function, and offset as the desired GLM model. For the LTCI dataset used in this study we found that the
estimated value of p (denoted p̂) consistently falls within the approximate ranges 1.30 < p̂mort < 1.40 for
mortality models, and 1.5 < p̂lapse < 1.60 for lapse models. This result supports the compound Poisson-
gamma distribution and overdispersion assumptions of the rate data. After the power parameter is acquired,
a Tweedie regression model is fit in the same manner as a typical GLM using maximum likelihood estimation.

4.2 Predictive Modeling Via Statistical Learning: Random Forests

Random forests are used in many academic disciplines, most notably genetics and other bio-sciences, and
are regarded for their accurate predictions in so called “small n large p” (high dimensional) problems (Strobl,
2009). In this application to LTCI rate data the problem is of the opposite nature (“large n small p”)
however, their statistical properties, particularly consistency, robustness with respect to noise variables, and
adaptation to sparsity make their use appealing.

Though mathematically appealing, the relative computational intensity (due to bootstrap aggregation)
of random forests when compared to GLMs, limited the sample sizes of our training sets. As previously
mentioned, random forest models generally perform well with smaller sample sizes however, we noticed a
fairly strong correlation between sample size and predictive accuracy throughout our model selection process.

Random forests offer the additional benefit of simplifying the modeling process by eliminating the need
to select specific covariates to include in the model because random forests always converge (Breiman, 2001).
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In fact, one of the strengths of random forest regression is that the procedure can be used to evaluate the
strength and correlation of individual predictors. It is still advisable to remove very weak predictors from
the model to improve computational efficiency.

4.3 Model Selection

We consider a variety of model structures to predict critical LTCI rates; some parametric (GLMs and GAMs)
and others non-parametric (random forests). As such, traditional measures of fit such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC) are not sufficient to compare the relative strengths
of our various models. Random forest models have no likelihood function to maximize and therefore there
is no statistic like AIC or BIC. Also, AIC values for Tweedie models are not possible to compute because
of to reliance on the quasi-likelihood and approximations may be unreliable (Shono, 2008). This problem is
exacerbated with large datasets and AIC approximations require an excessive amount of computing time and
resources. Fitting a model to a subset of our data and using it to predict later observations in the same dataset
affords us the opportunity to compare these predicted values to actual observed values. This method provides
a means to evaluate the predictive power of a model regardless of its mathematical underpinnings making
it possible to compare our parametric and non-parametric models using the same measures. Therefore,
we purpose using a set of intuitive weighted and un-weighted prediction error statistics as measures of the
predictive potential of a given model. We evaluate the mean absolute prediction error (MeanAPE), mean
squared prediction error (MeanSPE), median absolute prediction error (MedAPE), and the median squared
prediction error (MedSPE). All prediction error statistics presented in this paper are in terms of the rate
response variables rmort and rlapse.

In addition, we also consider the same prediction error statistics weighted by exposure (tmort i, tlapse i)
which we denote in this paper with the prefix “Wgt” (ex. WgtMeanSPE). Figure 1 displays a density plot
of non-zero mortality and lapse rates from our LTCI data. The majority of the observed rates are relatively
small and fall between the range 0−0.5. However, for both rates there is a significant cluster of observations
at exactly 1. Exploratory analysis revealed that these observations tend to have very low exposure periods.
Weighted prediction error statistics devalue observations with low exposure periods and describe the model’s
predictive performance for policies with longer histories.

1. Mortality Rate 2. Lapse Rate
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Figure 1: Density Plot of Non-Zero Mortality Rates

Both the un-weighted and weighted mean and median absolute prediction error statistics evaluate the
average deviation of our predicted responses from the observed responses with the median being more robust

10



to extreme deviations. The squared prediction error statistics help to identify models with large deviations
from the observed response.

4.3.1 Variable/Model Selection Process for GLM and GAM Models

Rather than employing an automated stepwise variable selection routine based on statistics such as p-values,
AIC, BIC, or other common measures of goodness-of-fit, we choose covariates for GLM and GAM models
based on guidance from industry actuaries, previous research, and our own experience modeling similar
phenomena.

Since we are interested mainly in the predictive accuracy of our models rather than fit, we aim to minimize
both the weighted and un-weighted MedAPE, MedSPE, MeanAPE, and MeanSPE. Our process for model
selection is as follows. Initial candidate models were fit to a random training set from our data and used to
predict observations in a test set. To avoid over-fitting and to evaluate their out-of-sample performance, a
group of the best performing models from each family were then each fit to the first 3 years of our data and
used to predict outcomes for the 4th year, then these models were fit to the first 4 years of data and used to
predict the 5th. This process of fitting a model to the first n years of data and predicting the (n+ 1)st year
was continued until the dataset was exhausted; constantly keeping track of prediction error statistics. The
best model from each family was chosen based on considering the lowest average prediction errors across all
years of data and also its ability to improve precision as it was fit to increasingly larger subsets of the data.

This method is similar in some sense to cross validation as it allows us to evaluate predictive accuracy
of our models for out-of-sample data. However, this method allows us to evaluate a model’s performance in
a setting which is similar to the world of a practicing actuary. Typically, A ratemaking actuary updating a
class plan would use all the historical data at their disposal to fit a model which predicts the future year(s)
mortality or lapse rates. Our procedure emulates this process exactly and gives us insight into how well these
models would perform in application rather than when used to make within-sample predictions which tend
to be much more forgiving. Assuming no drastic changes in the underlying process generating moralities
or lapses, we would prefer a model whose accuracy improves as more data is collected. Models with these
characteristics should accurately describe the mortality and claims processes.

5 Results

Though the Poisson regression models presented in the Goldenson Center report include substantial variable
modification, we selected models with equivalent covariates without modification as our baseline models for
comparison to various proposed improved methodologies. In this manner we first test the popular hypothesis
that variable modification improves predictive accuracy for LTCI rate models. We then compare the baseline
Poisson GLM to a Poisson GAM, negative binomial GLM, zero-inflated Poisson GLM, Tweedie GLM and
GAM, and finally random forest regression.

Though they may include slightly different sets of covariates, each model presented in this results section
is the respective best predicting model given a particular error structure. The best predicting set of covariates
for each error structure was tested for all other error structures. This helps to ensure predictive performance
is a function of an improved mathematical relationship between the covariates and the response rather than
variable selection technique.

5.1 Mortality Rate Results

5.1.1 Description of Mortality Model Structures

The baseline mortality model includes 3 covariates, attained age, gender, and duration. Though exact
parametric values cannot be published due to proprietary concerns, results from this model are consistent
with conventional logic. Mortality rate increases as attained age increases, increases as duration increases,
and the model indicates that females have a lower overall mortality rate than males. Notably absent are the
variables benefit amount and funding, which the LTCI insurer believes significantly affect mortality rates.
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We include the same covariates in the Poisson GAM to see if dropping the linearity assumption improves
model fit.

Our best fitting model for mortality rates was the Tweedie GLM model. It includes all the covariates
recommended by the provider with the exception of funding which did not improve predictive accuracy.
Interestingly both the interaction between issue age and duration, and the variable ported improved model
performance. Again we include the same covariates in the Tweedie GAM as the GLM. Table 4 includes
parameter estimates for the best predicting Tweedie GLM fit to mortality data from years 2000-2007.

Mortality Tweedie Model Parameter Estimates
Estimate Std. Error t-value Pr(>|t|)

Intercept -12.8890 0.1613 -79.9140 <2E-16
Gender (Male) 0.4066 0.0643 6.3280 2.48E-10
Issue Age 0.0745 0.0032 23.5200 <2E-16
Ported (Yes) 0.6674 0.0904 7.3790 1.60E-13
Funding (Level 1) 0.0101 0.1010 0.1000 0.9202
Funding (Level 2) -0.2127 0.0941 -2.2610 0.0238
Funding (Level 3) 0.2857 0.0858 3.3290 0.0009
Issue Age : Duration 0.0021 0.0002 10.2870 <2E-16

Table 4: Mortality Tweedie Model Parameter Estimates

Based on our provider’s experience, we expect the mortality rate to increase as issue age, and duration
increase and also expect males to have a higher risk of mortality. The fact that funding level 2 is associated
with a decreased mortality rate was expected as well. Our model confirms these initial assumptions and also
reveals a strong association between the ability to port a policy and an increased mortality rate.

Both the zero-inflated Poisson and the negative binomial models proved difficult to fit. The zero-inflated
models favored a simple covariate structure or they would not converge. This resulted in a count model with
fewer covariates than the Poisson. The zero-inflated portion of the model also includes fewer covariates than
we initially desired based on experimentation with fitting logistic regression models to a binary response
(mortality occurred or not). The negative binomial model that produced the most reasonable mortality rate
predictions in this study contains the same covariates as the best performing Tweedie model.

The mathematical properties of the random forest model discussed in section 4.2 allow us to include many
potentially predictive variables in the training data. The variables identified as important for predicting LTCI
mortality rates by the random forest algorithm generally agree with the suggestion of the provider. Issue age,
funding, duration, and benefit amount, appear to reduce MSE and increase node purity as would be expected.
However, for random forests, premiums and issue year are the first and fourth most predictive variables
respectively for both measures. Given sound underwriting practice we would expect premium levels to be
predictive of a policyholder’s mortality rate. Interestingly, including premiums in the parametric regression
models often caused a failure to converge possibly because of strong correlation with other covariates. Issue
year is also a logical variable for mortality rates since it has been observed that the average age of mortality
has been increasing steadily in the 20th and 21st century in the United States. The random forest model did
not however rank the variable gender as being an important predictor. This seems to defy the conventional
understanding that male mortality rate would be significantly higher than female mortality rate in a given
population and warrants further investigation.

For a complete description of mortality rate models see table 5.
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Mortality Rate Models

Response &
Covariates

Poisson
GLM/GAM

Negative
Binomial

GLM

ZIP GLM
Count

ZIP GLM
Zero Inflation

Tweedie
GLM/GAM

Random
Forest

Response ymort i ymort i ymort i ymort i rmort i rmort i

Incidence Year
Issue Year X

Stat Co X
Gender X X X X X X
Ported X X X

Duration X X X X
Attained Age X

Issue Age X X X X X
Issue Age*Duration X X X

Coverage X
EP X

Benefit Period X
Benefit Amount X

Funding X X X
Relationship X

Policy X
State X

Inflation X
Stop Bill X

Home Pct X
Premiums X

Premium Mode X
In Mode Indicator X

Mortality Exposure: tmort i X X X

Table 5: Mortality Rate Models

5.1.2 Mortality Rate Model Performance Comparison

Table 6 presents average prediction error statistics for all mortality rate models and average the improvements
over the baseline Poisson model. The table also contains the average baseline Poisson mortality model
prediction error statistics (multiplied by 1,000) for reference. Averages were calculated from results from the
series of mortality models fit per the methodology explained in section 4.3.1. Appendix 7.1 contains a table
with a complete summary of the series of fit models.
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Summary of Mortality Rate Prediction Error Statistics
Negative Binomial Poisson w/ Mod Poisson GAM Zero-Inf Poisson Random Forest Tweedie GLM Tweedie GAM

MedAPE Improvement 0.506 1.022 1.010 1.053 1.791 2.121 2.188
MedSPE Improvement 0.250 1.083 1.000 1.083 3.250 4.333 4.333
MeanAPE Improvement 0.544 1.002 1.007 1.040 1.598 1.910 1.942
MeanSPE Improvement 0.905 0.999 1.001 1.002 1.029 1.031 1.031
WgtMedAPE Improvement 0.541 0.940 0.994 1.023 7.915 7.179 7.396
WgtMedSPE Improvement 0.289 0.882 0.990 1.048 58.096 52.788 55.678
WgtMeanAPE Improvement 0.614 1.009 1.014 1.030 10.735 12.112 12.355
WgtMeanSPE Improvement 0.453 1.163 1.039 1.057 5.392 5.409 5.412

Average Baseline Poisson Model Error Statistics
1000 × MedAPE 0.3526
1000 × MedSPE 0.0001
1000 × MeanAPE 1.2094
1000 × MeanSPE 0.2002
1000 × WgtMedAPE 0.8386
1000 × WgtMedSPE 0.0007
1000 × WgtMeanAPE 4.0585
1000 × WgtMeanSPE 0.1915

Table 6: Summary of Mortality Rate Prediction Error Statistics

Tweedie GLMs and GAMs produced the best mortality models in this study. Un-weighted metrics show
a large improvement and weighted prediction error statistics were even more dramatic. This drastic change
between weighted and un-weighted prediction error statistics suggests that the Tweedie mortality model
more accurately predicts rates for observations with large exposure values. Predictive error statistics for the
Tweedie GAM are similar to the Tweedie GLM. However, these gains in predictive accuracy come at the
cost of model interpretability. We discuss this problem in more detail in section 5.3.7.

Random forest regression models also yielded better predictions than the baseline Poisson models. Like
the Tweedie model the largest gains were in MedAPE and MedSPE. MeanAPE and MeanSPE, like the
Tweedie model, experienced more modest gains. Weighted median prediction error statistics (WgtMedAPE
and WgtMed) for random forests outperformed all other models for mortality rates implying that these
models generally make more accurate predictions given longer exposure periods. However, the improvement
in weighted mean prediction error statistics was slightly lower than the improvement realized by the Tweedie
models. This may be affected by the presence of more outlying prediction errors.

Poisson GLMs with variable modification, Poisson GAMs, zero-inflated Poisson GLMs, and negative
binomial models did not improve predictive accuracy substantially when compared to the baseline Poisson
model. Surprisingly, the negative binomial regression model was the poorest performer in this study.
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5.1.3 Evidence of Mortality Rate Overestimation
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Predictions of Mean Mortality Rate 2008−2012

Figure 2: Predictions of Mean Mortality Rate 2008-2012

All of the models considered in this study tend to overestimate mean mortality rates. This phenomena
is illustrated in figure 2 where models were fit to the data from the years 2000-2007 and then used to
predict mortality rates in the years 2008-2012. Average predictions for these years was then compared to
the observed mean during the same time period. Only the random forest and Tweedie models reduce the
mean over-prediction significantly when compared to the baseline Poisson model which tends to overestimate
by approximately a factor of 3. The random forest model over-predicts by a factor of about 1.45 and the
Tweedie by a factor of 1.22. The worst performer was the negative binomial model which grossly overstated
the mean mortality rate by a factor greater than 7.
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1. Poisson Regression 2. Tweedie Regression 3. Random Forest
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Figure 3: Poisson, Tweedie, and Random Forest Mortality Rate Prediction Comparison

In addition to overestimating overall mortality rates, some models in this study exaggerate observed
trends between covariates and the mortality response. Figure 3 compares how well our two best performing
(Tweedie and random forest) mortality rate models and the baseline Poisson model estimate a well-known
trend in LTCI data. We expect mortality rate to increase exponentially as the variable duration increases.
The baseline Poisson model tends to sharply overestimate this trend while the Tweedie model very closely
mirrors the observed trend. Random forest regression captures the correlation between duration and the
mortality rate response but with a more irregular trend which does not appear exponential as we would
expect. This overestimation indicates that parameter estimates in the Poisson regression model are more
extreme than the data would suggest.

5.2 Lapse Rate Results

5.2.1 Assessment of Final Lapse Model’s Covariate Structure

The baseline lapse model includes 12 covariates. Documentation from the LTCI provider suggested that only
9 variables including, benefit period, benefit amount, home pct, inflation, attained/issue age, relationship,
funding, duration, and coverage would be potentially predictive. In addition to the suggested variables, the
Goldenson Center researchers also included the covariates ported, premium mode, and in mode indicator.
Since the latter 3 variables are not known to have any significant effect on lapse rates, we postulate their
inclusion was supported by a stepwise selection algorithm and this model may be overfit. The best performing
zero-inflated Poisson, and negative binomial models had similar parameterizations to the baseline Poisson
model.

Opposed to the baseline Poisson and other models which included many covariates, the Tweedie lapse
models only included the four covariates (duration, issue age, benefit amount and funding). Though the
model was simpler, it improved predictive accuracy in excess of a factor of two for all metrics, thereby
helping to validate our hypothesis that the baseline Poisson model was over specified. Table 7 provides
parameter estimates for a Tweedie GLM fit to lapse data from the years 2000-2007.
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Lapse Tweedie Model Parameter Estimates
Estimate Std. Error t value Pr(>|t|)

Intercept -0.9331 0.2764 -3.3760 0.0007
Funding (Level 1) -0.4121 0.0097 -42.5260 <2E-16
Funding (Level 2) -0.8205 0.0089 -91.7870 <2E-16
Funding (Level 3) -0.3132 0.0085 -36.7010 <2E-16
Issue Age -0.0251 0.0003 -95.1040 <2E-16
Duration -0.1274 0.0012 -106.4210 <2E-16
Coverage (Level 1) -0.3650 0.0097 -37.7050 <2E-16
Coverage (Level 2) -0.2606 0.0106 -24.5290 <2E-16
Benefit Amount (1,000-1,999) -0.7471 0.2762 -2.7050 0.0068
Benefit Amount (2,000-2,999) -0.8289 0.2762 -3.0010 0.0027
Benefit Amount (3,000-3,999) -0.9963 0.2763 -3.6060 0.0003
Benefit Amount (4,000-4,999) -1.0600 0.2763 -3.8350 0.0001
Benefit Amount (5,000-5,999) -1.3610 0.2770 -4.9140 8.92E-07
Benefit Amount (6,000-6,999) -1.3300 0.2767 -4.8060 1.54E-06
Benefit Amount (7,000-7,999) -2.3720 0.2908 -8.1540 3.51E-16
Benefit Amount (8,000-8,999) -2.1320 0.2820 -7.5590 4.07E-14
Benefit Amount (9,000-9,999) -2.5270 0.3300 -7.6570 1.90E-14
Benefit Amount (10,000+) -5.1930 0.4529 -11.4670 <2E-16

Table 7: Lapse Tweedie Model Parameter Estimates

The model predicts that lapse rates decrease as issue age, duration, and benefit amount increase and
also vary according to funding and coverage type. The fact that all the model parameters are negative is
generally consistent with the expectation of the LTCI provider. policyholders are less likely to lapse with
a more valuable product (larger benefit amount) and are likely to value their policies more as they age or
have paid into them for a long period of time. However, contrary to intuition, we observe that coverage
level 2 (total home care), applies less downward pressure on lapse rates than other coverage levels. Previous
efforts suggested this factor level may be associated with lower lapse rates due to policyholders viewing this
coverage as more valuable.

As in the random forest mortality model, premium and issue age are important predictors of lapse
rates. Additionally, benefit amount is a highly predictive covariate in the lapse rate random forest model.
Intuitively, one would expect an LTCI policyholder to consider both the premium they pay and the potential
benefit they may receive when making a lapsation decision. If the penalty from a high premium seems to
outweigh a potential future benefit the policyholder may be more likely to lapse. In an analysis of LTCI
lapse behavior Pinquet et al. (2011) draw a connection between a benefit-premium ratio and the age of the
policyholder at inception of the contract. The variable significance of our random forest regression models
appear to be consistent our intuition and other contemporary research.

For a complete description of mortality rate models see table 8.
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Lapse Rate Models

Response &
Covariates

Poisson
GLM/GAM

Negative
Binomial

GLM

ZIP GLM
Count

ZIP GLM
Zero Inflation

Tweedie
GLM/GAM

Random
Forest

Response ylapse i ylapse i ylapse i ylapse i rlapse i rlapse i
Incidence Year

Issue Year X
Stat Co X
Gender X
Ported X X X X

Duration X X X X X X
Attained Age X

Issue Age X X X X X X
Issue Age*Duration

Coverage X X X X
EP X

Benefit Period X X X X
Benefit Amount X X X X X

Funding X X X X X
Relationship X X X X

Policy X
State X

Inflation X X X X
Stop Bill X

Home Pct X X X X
Premiums X

Premium Mode X X X X
In Mode Indicator X X X X

Lapse Exposure: tlapse i X X X

Table 8: Lapse Rate Models

5.2.2 Lapse Rate Model Performance

Table 9 presents average prediction error statistics for all lapse rate models and average the improvements
over the baseline Poisson model. The table also contains the average baseline Poisson lapse model prediction
error statistics for reference. Averages were calculated from results from the series of lapse models fit per
the methodology explained in section 4.3.1. Appendix 7.2 contains a table with a complete summary of the
series of fit models.
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Summary of Lapse Rate Prediction Error Statistics
Negative Binomial Poisson w/ Mod Poisson GAM Zero-Inf Poisson Random Forest Tweedie GLM Tweedie GAM

MedAPE Improvement 0.923 0.975 0.964 1.002 2.601 2.648 2.460
MedSPE Improvement 0.849 0.946 0.929 1.000 6.870 7.182 6.077
MeanAPE Improvement 0.918 0.996 0.994 1.000 3.597 3.597 3.214
MeanSPE Improvement 0.759 1.009 1.019 1.001 17.258 17.258 18.093
WgtMedAPE Improvement 0.923 0.989 0.989 1.000 7.909 8.114 10.252
WgtMedSPE Improvement 0.849 0.977 0.980 0.999 65.312 68.770 109.885
WgtMeanAPE Improvement 0.847 0.999 1.020 1.000 37.092 37.188 42.284
WgtMeanSPE Improvement 0.694 1.009 1.046 1.000 3080.628 3069.661 3348.091
MedAPE 0.0391
MedSPE 0.0016
MeanAPE 0.1151
MeanSPE 0.1570
WgtMedAPE 0.1432
WgtMedSPE 0.0217
WgtMeanAPE 0.9479
WgtMeanSPE 7.2554

Table 9: Summary of Lapse Rate Prediction Error Statistics

Tweedie lapse rate models provided an even more impressive improvement over the baseline Poisson
models than Tweedie mortality models. The large gains in MeanSPE imply that the Tweedie model does
not predict as many or as large deviations from the true mean as does the baseline Poisson model. Addi-
tionally, like mortality models, we see massive increases in weighted prediction error statistics with the same
implications. The Tweedie GAM again was comparable to the Tweedie GLM with small improvements in
most statistics except MeanSPE and WgtMeanSPE.

Random forest regression models for lapse rates were nearly as successful in making accurate predictions
as were the Tweedie models when considering Un-weighted prediction error statistics. In fact, in this case
the random forest regression was the most accurate model in terms of MeanSPE. These models were the
best performers for all of the weighted prediction error statistics.

Again the Poisson GLM with variable modification, the Poisson GAM, and the zero-inflated Poisson
GLM were not significantly better or worse than the baseline Poisson GLM in terms of predictive accuracy.
However, as in the mortality rate models, the negative binomial model was the worst performer. Both
un-weighted and weighted prediction error statistics suggest this model is from approximately 8%-30% less
accurate than the baseline Poisson model.
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5.2.3 Evidence of Lapse Rate Overestimation
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Figure 4: Predictions of Mean Lapse Rate 2008-2012

Baseline Poisson lapse rate models, possibly because of the influence of greater overdispersion, tend to
overestimate to an even larger extent than mortality models. As seen in figure 4 The baseline lapse model
overestimates the mean for the last 5 years of observed data by approximately 6.3 times. The zero-inflated
and variable modified Poisson regression model overestimate by roughly the same amount.

The negative binomial model overstated the mean lapse rate more than all other models. Predictions on
the last 5 years of data show the negative binomial model has overestimated the mean lapse rate by a factor
slightly less than 7. As opposed to mortality rates, the increase in lapse rate over-prediction for negative
binomial models was only marginally worse than the baseline Poisson models.

The Tweedie regression model only overestimates mean lapse rates by a factor of 1.12 and is again the
model which over-predicts by the smallest margin.
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1. Poisson Regression 2. Tweedie Regression 3. Random Forest
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Figure 5: Poisson Vs. Tweedie Lapse Rate Prediction Comparison

Figure 5 examines how well the models reproduce the trend which relates duration to lapse rates to. We
expect lapse rates to decrease as duration increases. The Poisson regression captures the correct correlation
but produces a much exaggerated trend; overestimating lapse rate for most values of duration. The random
forest regression model also tends to overestimate, albeit much less, and produces a more reasonably shaped
trend. The Tweedie regression model captures the relationship between the response and duration precisely
and is hardly discernible from the observed trend.

5.3 Additional Remarks and Observations Regarding Results

5.3.1 Success with Tweedie GLMs

Tweedie GLM and also GAM models were the best performing models in this study. The Tweedie GLM is
the only parametric model in this study which has an error structure that directly accommodates positive
semi-continuous data with a point mass at zero. In addition to being the best predicting models in this study,
Tweedie models have appealing properties which lend themselves to the LTCI death and lapse processes.

The Tweedie models perform superiorly due to their ability to model Poisson overdispersion through
the variance function with power parameter p, the positive point mass at zero, and because the compound
Poisson-gamma distribution (as parameterized by the Tweedie distribution) accurately describes process
generating the response variables of interest.

Because of their predictive accuracy, flexibility, mathematical appeal, and ease of interpretation, we be-
lieve the Tweedie compound Poisson-gamma GLM framework outperforms traditional Poisson GLM models
enough to warrant their adoption by practicing actuaries.

5.3.2 Random Forest Regression: Accurate but Limited

Though random forest regression can produce accurate predictions, its non-parametric nature prevents the
user from exploiting a priori assumptions such as the exponential growth relationship between mortality rate
and duration. The model output gives no understanding of how the covariates affect the mean response nor
any measures of uncertainty around estimated parameters (indeed there are no estimated parameters). For
these reasons we hesitate to recommend the exclusive use models for LTCI rates. However, variable impor-
tance statistics and plots provide a meaningful and intuitive illustration of potentially predictive covariates.
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This output from a random forest model could be used to inform the selection of covariates for a parametric
model, especially if little is known about the process being analyzed.

5.3.3 Zero-Inflated Models: No Major Improvement

Given data with excess zeros, the extent to which a ZIP GLM outperforms a simple Poisson GLM in terms
of fit and predictive accuracy is determined by how well the model identifies the zero generating process.
Though we had selected covariates for the zero-inflated portion of the model (through logistic regression) we
had difficulty incorporating these assumptions in our final ZIP models. Again convergence proved challenging
and we were forced to dramatically simplify our model specifications to get reasonable parameter estimates.
For this reason, our ZIP models did not differ significantly from our baseline Poisson models.

There are at least three possible reasons for this failure. The first two are fairly obvious, zeros and events
such as deaths or lapses may not be generated by a binomial process, or zeros and events are generated by a
binomial process but this LTCI dataset does not contain strongly predictive variables for this process. The
third reason arises because of the properties of logistic regression models. Mathematically, successes, in a
binary response model such as logistic regression, are more informative than failures. Subsequently, given a
sparse response, these models tend to dramatically underestimate the probabilities of rare events, in our case
mortalities or lapses (King and Zeng, 2001). It is likely a combination of the latter two problems affected
predictions produced by our ZIP models and for these reasons we do not recommend these models for LTCI
data.

5.3.4 An Overestimation Problem For Models With Poisson and Negative Binomial Error
Structures

As shown throughout section 5.2, Poisson regression models tend to overestimate mean mortality and lapse
rates. The overestimation seems to be driven by two factors. Primarily, since LTCI data has an excess
of zero counts, we can expect that a model under the simple Poisson assumption will underestimate the
number of zero observations (Lambert, 1992). Also, as discussed in section 3.3.1, there is no upper bound on
the mortality or lapse rate a Poisson model can predict. As evidence, the baseline Poisson model predicted
lapse rates as high as 3,200% when fit to the last 5 years of data. The combination of these two factors
undoubtedly lead to over-prediction of our two response variables.

Prior to beginning our modeling efforts we expected negative binomial regression to be a natural superior
alternative to Poisson regression due to the popular belief that the more sophisticated parameterization
better accommodates overdispersion. It has even been shown that the probability of zero in a mixed Poisson
distribution (such as the negative binomial) is greater than that for a simple Poisson distribution with
the same mean (Mullahy, 1997). For our modeling efforts, negative binomial regression failed to improve
upon the Poisson and in fact, performed significantly worse. Parameter estimates, especially estimates of
the heterogeneity parameter, often failed to converge using the popular iteratively weighted least squares
algorithm. Even with a very large number of iterations convergence was elusive for what appeared to be
reasonable models under other error assumptions. For this reason the variable selection process for the
negative binomial models was as much a function of potential for convergence as it was predictive accuracy.

Negative binomial regression models produced the most extreme overestimation of mean mortality and
lapse rates when compared to our other models. Though somewhat counter-intuitive this problem has been
observed in other studies. In an application to shark catch data with excess zeros, Minami et al. (2007) show
that negative binomial regression tends to overestimate the trend over time in mean shark catch count. The
negative binomial model accommodates the excess zeros by increasing its variance through the heterogeneity
parameter α. The heterogeneity parameter would does affect parameter estimates if the negative binomial
model is appropriate for the data and correctly specified (Minami et al., 2007). However, due mainly to an
extreme excess of zeros, this LTCI dataset is not well described by the negative binomial assumption and
therefore it appears the extreme heterogeneity is grossly exaggerating the trends in our data. For example, the
LTCI provider’s opinion and our data suggest there is a positive correlation between duration and mortality
rate and a negative correlation between duration and lapse rate. The negative binomial model captures these
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trends but appears to inflate the associated model parameters. Figure 6 illustrates the exaggerated trend
estimations produced by the negative binomial model.
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Figure 6: Actual Vs. Predicted Average Negative Binomial Lapse & Mortality Rates Years 2008-2012

Negative binomial GLMs overestimated our mean response variables to a greater degree than the Poisson
regression models. We observed several outlying rate predictions in excess of 4,000% when the model was
used to predict the last 5 years of data. Negative binomial models were by far our worst performing. We
recommend caution before their application if the data exhibit extreme excess zeros.

5.3.5 Potential Problems Caused by Stepwise Regression

Due to the baseline Poisson lapse rate model’s large number of covariates, conflict with the information
provided by the LTCI insurer, and simpler models that vastly outperform it, we believe the combination of
overdispersion and bias in parameter estimation (from stepwise selection) led to a uninterpretable, over fit,
and poor predicting model. It is worth noting that this problem is far more pronounced for lapse rate models
which show massive overdispersion than for mortality rate models where the Poisson assumption may be
more reasonable.

5.3.6 Variable Modification: No Improvement

To assess industry practice which suggests variable modification can improve model fit and predictive accu-
racy, we fit Poisson mortality and lapse rate models with variable modification per the Goldenson Report.
Our initial assumptions that variable modification would not improve predictive accuracy of a Poisson LTCI
rate model were confirmed.

Importantly, given the outcomes in this study, variable modification did not alleviate any of the prob-
lems associated with Poisson over-prediction. Both the variable modified mortality and lapse rate models
overestimated the mean to a slightly greater degree than the baseline models for the last 5 years of observed
data.
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5.3.7 Additive Models: Not Recommended for LTCI Mortality and Lapse Rates

When applied to our LTCI mortality and lapse data, smoothing of continuous variables offers little to no
benefit. Additive models with either Poisson or Tweedie errors fit to the data produced either inconsequential
gains in predictive accuracy or slight decreases. Poisson GAMs generally under-performed compared to their
GLM counterparts, and at most we observed a 4.5% improvement in lapse MedSPE for the Tweedie GAM
versus Tweedie GLM.

Even given the potential of a small performance boost for lapse rate models, we do not recommend
additive models for LTCI rate data. Model interpretability and computational efficiency are sacrificed.
Additionally, edf statistics for our smoothed predictors were very close to one for both mortality and lapse
models. This implies that the log-linear relationship between continuous covariates and the mean response
assumed in the baseline GLM models appears to be adequate.

6 Conclusion

Typical industry practice for modeling LTCI mortality and lapse data is fundamentally flawed. Assumptions
required for Poisson regression are not supported by the data. Variable banding and stepwise selection
algorithms can further exacerbate problems and provide false confidence in parameter estimates. Importantly,
we showed that the Poisson GLMs and popular alternatives, zero-inflated Poisson, and negative binomial
GLMs systematically overestimate mean LTCI mortality and lapse rates. This overestimation could have
serious repercussions and will certainly increase the risk of making poor pricing decisions.

Tweedie GLMs produce vastly improved predictions of mean mortality and lapse rates for out of sample
data. In our study, Tweedie regression models improved average predictive accuracy (measured by several
prediction error statistics) over Poisson regression models by as much as four times for mortality rates and
17 times for lapse rates.

These performance gains are significant and the benefit of applying these models to LTCI data with excess
zeros is clear. Though the Tweedie likelihood is more complex than the Poisson, the additional complexity
should not be a barrier to implementation of Tweedie GLMs. Major statistical software packages such as
SAS and R and some actuarial software (Emblem) include the capability to perform Tweedie regression so
the method is accessible to majority of practicing actuaries. Interpretation of model outputs is similar to
more popular generalized linear models and any learning curve is certainly justified by the results.
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7 Appendix

7.1 Mortality Rate Prediction Error Statistics and Summary for All Methods

Year Poisson
w/out
Modifica-
tion

Poisson
w/ Modi-
fication

Poisson
GAM CR
Splines

Zero-
Inflated
Poisson

Negative
Binomial

Tweedie
GLM

Tweedie
GAM CR
Splines

Random
Forest

MedAPE Year 3 0.00024657 0.00024982 0.00024939 0.00024978 0.00038355 0.00010012 0.00009105 0.00008214
MedSPE Year 3 0.00000006 0.00000006 0.00000006 0.00000006 0.00000015 0.00000001 0.00000001 0.00000001
MeanAPE Year 3 0.00088495 0.00087865 0.00088191 0.00089254 0.00126704 0.00041660 0.00042003 0.00051640
MeanSPE Year 3 0.00015798 0.00015815 0.00015804 0.00015812 0.00016292 0.00015524 0.00015524 0.00015547

MedAPE Year 4 0.00028199 0.00028441 0.00028243 0.00027981 0.00055153 0.00013575 0.00012713 0.00010629
MedSPE Year 4 0.00000008 0.00000008 0.00000008 0.00000008 0.00000030 0.00000002 0.00000002 0.00000001
MeanAPE Year 4 0.00098153 0.00097149 0.00097953 0.00098097 0.00177184 0.00050071 0.00049711 0.00059004
MeanSPE Year 4 0.00015731 0.00015736 0.00015731 0.00015740 0.00017270 0.00015386 0.00015384 0.00015408

MedAPE Year 5 0.00031861 0.00031896 0.00031571 0.00031375 0.00063376 0.00015108 0.00014235 0.00013459
MedSPE Year 5 0.00000010 0.00000010 0.00000010 0.00000010 0.00000040 0.00000002 0.00000002 0.00000002
MeanAPE Year 5 0.00110578 0.00109537 0.00110118 0.00109790 0.00197740 0.00054534 0.00053775 0.00061208
MeanSPE Year 5 0.00018552 0.00018573 0.00018553 0.00018560 0.00020472 0.00018051 0.00018050 0.00018069

MedAPE Year 6 0.00032220 0.00031970 0.00031972 0.00030103 0.00069167 0.00016676 0.00015977 0.00016389
MedSPE Year 6 0.00000010 0.00000010 0.00000010 0.00000009 0.00000048 0.00000003 0.00000003 0.00000003
MeanAPE Year 6 0.00115867 0.00115023 0.00115517 0.00110640 0.00220467 0.00063079 0.00062944 0.00072707
MeanSPE Year 6 0.00020121 0.00020146 0.00020119 0.00020082 0.00022328 0.00019561 0.00019555 0.00019585

MedAPE Year 7 0.00034530 0.00034214 0.00034327 0.00033941 0.00073055 0.00016893 0.00016376 0.00020060
MedSPE Year 7 0.00000012 0.00000012 0.00000012 0.00000012 0.00000053 0.00000003 0.00000003 0.00000004
MeanAPE Year 7 0.00122445 0.00121877 0.00121676 0.00121492 0.00234255 0.00064469 0.00063628 0.00076551
MeanSPE Year 7 0.00019694 0.00019728 0.00019678 0.00019703 0.00022026 0.00019090 0.00019090 0.00019103

MedAPE Year 8 0.00037247 0.00036457 0.00036542 0.00036567 0.00075958 0.00017066 0.00016752 0.00017555
MedSPE Year 8 0.00000014 0.00000013 0.00000013 0.00000013 0.00000058 0.00000003 0.00000003 0.00000003
MeanAPE Year 8 0.00124801 0.00124557 0.00123968 0.00124177 0.00245406 0.00062096 0.00061044 0.00069950
MeanSPE Year 8 0.00016015 0.00016054 0.00015993 0.00016020 0.00018663 0.00015355 0.00015351 0.00015373

MedAPE Year 9 0.00039380 0.00038714 0.00038793 0.00038730 0.00078967 0.00017258 0.00016867 0.00019687
MedSPE Year 9 0.00000016 0.00000015 0.00000015 0.00000015 0.00000062 0.00000003 0.00000003 0.00000004
MeanAPE Year 9 0.00137290 0.00137284 0.00136020 0.00135615 0.00254526 0.00069122 0.00067921 0.00079451
MeanSPE Year 9 0.00023370 0.00023398 0.00023337 0.00023348 0.00025945 0.00022618 0.00022618 0.00022628

MedAPE Year 10 0.00042605 0.00041486 0.00042033 0.00041783 0.00085177 0.00018354 0.00018287 0.00023611
MedSPE Year 10 0.00000018 0.00000017 0.00000018 0.00000017 0.00000073 0.00000003 0.00000003 0.00000006
MeanAPE Year 10 0.00143085 0.00143230 0.00141679 0.00141226 0.00273659 0.00071090 0.00069464 0.00082252
MeanSPE Year 10 0.00021853 0.00021891 0.00021818 0.00021823 0.00024893 0.00021027 0.00021023 0.00021047

MedAPE Year 11 0.00045828 0.00043877 0.00045177 0.00044507 0.00090266 0.00019082 0.00018874 0.00024722
MedSPE Year 11 0.00000021 0.00000019 0.00000020 0.00000020 0.00000081 0.00000004 0.00000004 0.00000006
MeanAPE Year 11 0.00152666 0.00152942 0.00151164 0.00150152 0.00285612 0.00075109 0.00073261 0.00087620
MeanSPE Year 11 0.00023766 0.00023806 0.00023727 0.00023728 0.00026715 0.00022862 0.00022861 0.00022876

MedAPE Year 12 0.00048173 0.00046030 0.00047835 0.00038845 0.00093720 0.00019848 0.00019311 0.00037095
MedSPE Year 12 0.00000023 0.00000021 0.00000023 0.00000015 0.00000088 0.00000004 0.00000004 0.00000014
MeanAPE Year 12 0.00160479 0.00160937 0.00158569 0.00132930 0.00297557 0.00078656 0.00076572 0.00102028
MeanSPE Year 12 0.00025185 0.00025242 0.00025139 0.00024822 0.00028294 0.00024201 0.00024201 0.00020070

MedAPE Year 13 0.00023199 0.00021420 0.00022743 0.00019566 0.00043523 0.00019050 0.00018807 0.00025185
MedSPE Year 13 0.00000005 0.00000005 0.00000005 0.00000004 0.00000019 0.00000004 0.00000004 0.00000006
MeanAPE Year 13 0.00076531 0.00076737 0.00075754 0.00065788 0.00132329 0.00066480 0.00064841 0.00090071
MeanSPE Year 13 0.00020111 0.00020116 0.00020105 0.00020073 0.00020498 0.00020000 0.00019997 0.00024226

Table 10: Mortality Rate Un-Weighted Prediction Error Statistics
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Year Poisson
w/out
Modifica-
tion

Poisson
w/ Modi-
fication

Poisson
GAM CR
Splines

Zero-
Inflated
Poisson

Negative
Binomial

Tweedie
GLM

Tweedie
GAM CR
Splines

Random
Forest

WgtMedAPE Year 3 0.00065275 0.00069301 0.00066480 0.00066821 0.00091827 0.00006672 0.00006171 0.00004701
WgtMedSPE Year 3 0.00000043 0.00000048 0.00000044 0.00000045 0.00000084 0.00000000 0.00000000 0.00000000
WgtMeanAPE Year 3 0.00300735 0.00315711 0.00302741 0.00309691 0.00373197 0.00020528 0.00020505 0.00025243
WgtMeanSPE Year 3 0.00008873 0.00008620 0.00008633 0.00009285 0.00011271 0.00002533 0.00002533 0.00002546

WgtMedAPE Year 4 0.00071925 0.00075166 0.00072850 0.00071845 0.00130797 0.00009896 0.00009161 0.00006250
WgtMedSPE Year 4 0.00000052 0.00000056 0.00000053 0.00000052 0.00000171 0.00000001 0.00000001 0.00000000
WgtMeanAPE Year 4 0.00339420 0.00343950 0.00336710 0.00341707 0.00542290 0.00026850 0.00026525 0.00029076
WgtMeanSPE Year 4 0.00011742 0.00010768 0.00011446 0.00011864 0.00021810 0.00002764 0.00002763 0.00002773

WgtMedAPE Year 5 0.00079534 0.00083092 0.00081111 0.00079497 0.00148312 0.00010895 0.00010389 0.00007687
WgtMedSPE Year 5 0.00000063 0.00000069 0.00000066 0.00000063 0.00000220 0.00000001 0.00000001 0.00000001
WgtMeanAPE Year 5 0.00400023 0.00394265 0.00394569 0.00398223 0.00633981 0.00028619 0.00028132 0.00029823
WgtMeanSPE Year 5 0.00016526 0.00014295 0.00015820 0.00016187 0.00030452 0.00002936 0.00002935 0.00002942

WgtMedAPE Year 6 0.00083389 0.00088080 0.00084820 0.00080172 0.00164478 0.00011388 0.00010787 0.00008333
WgtMedSPE Year 6 0.00000070 0.00000078 0.00000072 0.00000064 0.00000271 0.00000001 0.00000001 0.00000001
WgtMeanAPE Year 6 0.00433911 0.00426195 0.00424385 0.00417502 0.00713053 0.00032244 0.00031935 0.00033500
WgtMeanSPE Year 6 0.00019067 0.00016214 0.00018016 0.00017545 0.00038326 0.00003267 0.00003265 0.00003274

WgtMedAPE Year 7 0.00084382 0.00090290 0.00085459 0.00083964 0.00167663 0.00011768 0.00011421 0.00010417
WgtMedSPE Year 7 0.00000071 0.00000082 0.00000073 0.00000070 0.00000281 0.00000001 0.00000001 0.00000001
WgtMeanAPE Year 7 0.00415148 0.00409062 0.00408729 0.00411317 0.00702445 0.00033876 0.00033259 0.00037751
WgtMeanSPE Year 7 0.00018544 0.00015563 0.00017882 0.00018223 0.00039673 0.00003284 0.00003282 0.00003291

WgtMedAPE Year 8 0.00089242 0.00096327 0.00090280 0.00089657 0.00171762 0.00011872 0.00011732 0.00009722
WgtMedSPE Year 8 0.00000080 0.00000093 0.00000082 0.00000080 0.00000295 0.00000001 0.00000001 0.00000001
WgtMeanAPE Year 8 0.00434785 0.00437123 0.00427375 0.00433822 0.00726435 0.00034285 0.00033610 0.00035822
WgtMeanSPE Year 8 0.00018855 0.00016174 0.00018188 0.00018912 0.00040413 0.00002807 0.00002805 0.00002812

WgtMedAPE Year 9 0.00095534 0.00103526 0.00095463 0.00095307 0.00180676 0.00012182 0.00011897 0.00010591
WgtMedSPE Year 9 0.00000091 0.00000107 0.00000091 0.00000091 0.00000326 0.00000001 0.00000001 0.00000001
WgtMeanAPE Year 9 0.00490743 0.00483337 0.00479410 0.00484418 0.00848582 0.00034919 0.00034126 0.00037641
WgtMeanSPE Year 9 0.00026360 0.00021795 0.00024710 0.00025694 0.00073674 0.00003553 0.00003552 0.00003559

WgtMedAPE Year 10 0.00098918 0.00106020 0.00098087 0.00098171 0.00185041 0.00012906 0.00012868 0.00012639
WgtMedSPE Year 10 0.00000098 0.00000112 0.00000096 0.00000096 0.00000342 0.00000002 0.00000002 0.00000002
WgtMeanAPE Year 10 0.00475785 0.00461748 0.00470320 0.00468671 0.00807648 0.00037363 0.00036483 0.00040716
WgtMeanSPE Year 10 0.00025594 0.00021158 0.00024814 0.00025137 0.00065209 0.00003458 0.00003455 0.00003465

WgtMedAPE Year 11 0.00105432 0.00111993 0.00104926 0.00104371 0.00194249 0.00013358 0.00013291 0.00013073
WgtMedSPE Year 11 0.00000111 0.00000125 0.00000110 0.00000109 0.00000377 0.00000002 0.00000002 0.00000002
WgtMeanAPE Year 11 0.00490214 0.00478200 0.00484409 0.00480451 0.00812499 0.00038970 0.00038032 0.00042361
WgtMeanSPE Year 11 0.00027410 0.00023094 0.00026622 0.00026750 0.00065878 0.00003739 0.00003737 0.00003745

WgtMedAPE Year 12 0.00110230 0.00116786 0.00110165 0.00096817 0.00200543 0.00013678 0.00013447 0.00019547
WgtMedSPE Year 12 0.00000122 0.00000136 0.00000121 0.00000094 0.00000402 0.00000002 0.00000002 0.00000004
WgtMeanAPE Year 12 0.00499408 0.00490305 0.00492521 0.00429266 0.00817796 0.00040129 0.00038931 0.00061461
WgtMeanSPE Year 12 0.00027956 0.00024122 0.00027083 0.00021298 0.00065412 0.00003921 0.00003919 0.00006717

WgtMedAPE Year 13 0.00038637 0.00041067 0.00038664 0.00035534 0.00069909 0.00013876 0.00013572 0.00013590
WgtMedSPE Year 13 0.00000015 0.00000017 0.00000015 0.00000013 0.00000049 0.00000002 0.00000002 0.00000002
WgtMeanAPE Year 13 0.00184191 0.00183952 0.00181069 0.00160808 0.00291011 0.00040813 0.00039806 0.00042476
WgtMeanSPE Year 13 0.00009672 0.00009345 0.00009471 0.00008388 0.00012916 0.00006671 0.00006669 0.00003929

Table 11: Mortality Rate Weighted Prediction Error Statistics
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7.2 Lapse Rate Prediction Error Statistics and Summary for All Methods

Year Poisson
w/out
Modifica-
tion

Poisson
w/ Modi-
fication

Poisson
GAM CR
Splines

Zero-
Inflated
Poisson

Negative
Binomial

Tweedie
GLM

Tweedie
GAM CR
Splines

Random
Forest

MedAPE Year 3 0.04658 0.04658 0.04721 0.04808 0.05274 0.01902 0.01847 0.01552
MedSPE Year 3 0.00217 0.00217 0.00223 0.00231 0.00278 0.00036 0.00034 0.00024
MeanAPE Year 3 0.14743 0.14743 0.14685 0.14775 0.16277 0.03787 0.03782 0.03666
MeanSPE Year 3 0.28991 0.28993 0.27714 0.27422 0.38705 0.01017 0.01018 0.00950

MedAPE Year 4 0.04580 0.04580 0.04661 0.04715 0.05036 0.01756 0.01708 0.01510
MedSPE Year 4 0.00210 0.00210 0.00217 0.00222 0.00254 0.00031 0.00029 0.00023
MeanAPE Year 4 0.13384 0.13384 0.13394 0.13410 0.14535 0.03626 0.03617 0.03629
MeanSPE Year 4 0.19017 0.19017 0.18778 0.18645 0.24994 0.01040 0.01041 0.00969

MedAPE Year 5 0.04342 0.04342 0.04485 0.04481 0.04772 0.01673 0.01629 0.01492
MedSPE Year 5 0.00189 0.00189 0.00201 0.00201 0.00228 0.00028 0.00027 0.00022
MeanAPE Year 5 0.12450 0.12450 0.12502 0.12502 0.13540 0.03555 0.03549 0.03671
MeanSPE Year 5 0.15985 0.15986 0.15524 0.15753 0.21832 0.01038 0.01038 0.00971

MedAPE Year 6 0.04079 0.03969 0.04249 0.04206 0.04444 0.01582 0.01546 0.01519
MedSPE Year 6 0.00166 0.00158 0.00181 0.00177 0.00198 0.00025 0.00024 0.00023
MeanAPE Year 6 0.11951 0.11986 0.12038 0.12103 0.13285 0.03374 0.03369 0.03633
MeanSPE Year 6 0.16963 0.16742 0.16353 0.17552 0.24913 0.00987 0.00987 0.00928

MedAPE Year 7 0.04084 0.04088 0.04219 0.04188 0.04380 0.01509 0.01474 0.01541
MedSPE Year 7 0.00167 0.00167 0.00178 0.00175 0.00192 0.00023 0.00022 0.00024
MeanAPE Year 7 0.11894 0.11896 0.11983 0.11949 0.13024 0.03312 0.03310 0.03672
MeanSPE Year 7 0.15870 0.15870 0.15814 0.15996 0.21549 0.00958 0.00958 0.00907

MedAPE Year 8 0.04094 0.04096 0.04253 0.04165 0.04357 0.01466 0.01445 0.01566
MedSPE Year 8 0.00168 0.00168 0.00181 0.00173 0.00190 0.00021 0.00021 0.00025
MeanAPE Year 8 0.11990 0.11991 0.12102 0.12004 0.13095 0.03215 0.03217 0.03612
MeanSPE Year 8 0.18447 0.18447 0.18450 0.18644 0.24677 0.00920 0.00920 0.00872

MedAPE Year 9 0.04051 0.04054 0.04248 0.04141 0.04322 0.01424 0.01407 0.01564
MedSPE Year 9 0.00164 0.00164 0.00180 0.00171 0.00187 0.00020 0.00020 0.00024
MeanAPE Year 9 0.12203 0.12208 0.12340 0.12211 0.13218 0.03145 0.03152 0.03548
MeanSPE Year 9 0.19814 0.19815 0.19676 0.19402 0.24082 0.00901 0.00901 0.00853

MedAPE Year 10 0.04004 0.04008 0.04214 0.04079 0.04253 0.01369 0.01360 0.01521
MedSPE Year 10 0.00160 0.00161 0.00178 0.00166 0.00181 0.00019 0.00019 0.00023
MeanAPE Year 10 0.11694 0.11697 0.11839 0.11688 0.12591 0.03133 0.03142 0.03547
MeanSPE Year 10 0.13220 0.13219 0.13146 0.13013 0.16119 0.00962 0.00962 0.00909

MedAPE Year 11 0.03781 0.03783 0.03981 0.03866 0.04042 0.01323 0.01318 0.01531
MedSPE Year 11 0.00143 0.00143 0.00159 0.00149 0.00163 0.00017 0.00017 0.00023
MeanAPE Year 11 0.10947 0.10949 0.11059 0.10995 0.11844 0.02806 0.02812 0.03296
MeanSPE Year 11 0.11378 0.11377 0.11226 0.11432 0.14276 0.00753 0.00753 0.00727

MedAPE Year 12 0.03564 0.03566 0.03754 0.03649 0.03807 0.01256 0.01244 0.01455
MedSPE Year 12 0.00127 0.00127 0.00141 0.00133 0.00145 0.00016 0.00015 0.00021
MeanAPE Year 12 0.10617 0.10616 0.10711 0.10684 0.11459 0.02706 0.02710 0.03178
MeanSPE Year 12 0.10893 0.10891 0.10720 0.11043 0.13820 0.00729 0.00728 0.00701

MedAPE Year 13 0.01733 0.01733 0.01777 0.01781 0.01849 0.01266 0.01246 0.02213
MedSPE Year 13 0.00030 0.00030 0.00032 0.00032 0.00034 0.00016 0.00016 0.00049
MeanAPE Year 13 0.04747 0.04747 0.04787 0.04789 0.05081 0.02541 0.02543 0.03935
MeanSPE Year 13 0.02172 0.02172 0.02162 0.02249 0.02683 0.00708 0.00708 0.00765

Table 12: Lapse Rate Un-Weighted Prediction Error Statistics
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Year Poisson
w/out
Modifica-
tion

Poisson
w/ Modi-
fication

Poisson
GAM CR
Splines

Zero-
Inflated
Poisson

Negative
Binomial

Tweedie
GLM

Tweedie
GAM CR
Splines

Random
Forest

WgtMedAPE Year 3 0.18550 0.18551 0.18461 0.18909 0.20751 0.02258 0.02191 0.01463
WgtMedSPE Year 3 0.03441 0.03441 0.03408 0.03575 0.04306 0.00051 0.00048 0.00021
WgtMeanAPE Year 3 1.40972 1.40975 1.32788 1.35914 1.67610 0.03115 0.03100 0.02350
WgtMeanSPE Year 3 13.48813 13.48859 11.83220 12.03620 20.68636 0.00278 0.00279 0.00234

WgtMedAPE Year 4 0.16878 0.16877 0.16920 0.17070 0.18290 0.02040 0.01980 0.01387
WgtMedSPE Year 4 0.02849 0.02848 0.02863 0.02914 0.03345 0.00042 0.00039 0.00019
WgtMeanAPE Year 4 1.08564 1.08565 1.06084 1.07811 1.29416 0.02800 0.02783 0.02210
WgtMeanSPE Year 4 7.68571 7.68578 7.45913 7.70461 11.97500 0.00252 0.00253 0.00217

WgtMedAPE Year 5 0.15558 0.15558 0.15652 0.15763 0.16838 0.01957 0.01911 0.01362
WgtMedSPE Year 5 0.02420 0.02421 0.02450 0.02485 0.02835 0.00038 0.00037 0.00019
WgtMeanAPE Year 5 1.00865 1.00868 0.98768 1.00396 1.21872 0.02727 0.02713 0.02237
WgtMeanSPE Year 5 6.94005 6.94042 6.49356 6.87881 11.06026 0.00256 0.00257 0.00228

WgtMedAPE Year 6 0.15369 0.15368 0.15518 0.15657 0.16842 0.01915 0.01862 0.01355
WgtMedSPE Year 6 0.02362 0.02362 0.02408 0.02452 0.02837 0.00037 0.00035 0.00018
WgtMeanAPE Year 6 1.10875 1.10879 1.07324 1.13138 1.37428 0.02650 0.02640 0.02235
WgtMeanSPE Year 6 8.68262 8.68317 7.93864 9.23676 14.16662 0.00243 0.00244 0.00219

WgtMedAPE Year 7 0.14848 0.14852 0.14971 0.15023 0.15998 0.01819 0.01774 0.01325
WgtMedSPE Year 7 0.02204 0.02206 0.02241 0.02257 0.02559 0.00033 0.00031 0.00018
WgtMeanAPE Year 7 0.98262 0.98266 0.96874 0.99167 1.17858 0.02589 0.02585 0.02242
WgtMeanSPE Year 7 7.06375 7.06380 6.91797 7.21246 10.31060 0.00236 0.00237 0.00215

WgtMedAPE Year 8 0.15042 0.15045 0.15242 0.15090 0.16148 0.01771 0.01730 0.01344
WgtMedSPE Year 8 0.02263 0.02263 0.02323 0.02277 0.02608 0.00031 0.00030 0.00018
WgtMeanAPE Year 8 1.08298 1.08300 1.07413 1.09681 1.28520 0.02505 0.02501 0.02178
WgtMeanSPE Year 8 10.45092 10.45059 10.33251 10.71077 14.42853 0.00222 0.00223 0.00202

WgtMedAPE Year 9 0.15419 0.15430 0.15704 0.15512 0.16606 0.01709 0.01675 0.01344
WgtMedSPE Year 9 0.02377 0.02381 0.02466 0.02406 0.02758 0.00029 0.00028 0.00018
WgtMeanAPE Year 9 1.13697 1.13700 1.13320 1.13367 1.28270 0.02459 0.02461 0.02160
WgtMeanSPE Year 9 11.34643 11.34499 11.30350 10.87933 13.27683 0.00215 0.00216 0.00196

WgtMedAPE Year 10 0.14496 0.14507 0.14797 0.14564 0.15513 0.01657 0.01624 0.01331
WgtMedSPE Year 10 0.02101 0.02105 0.02190 0.02121 0.02407 0.00027 0.00026 0.00018
WgtMeanAPE Year 10 0.83720 0.83721 0.83584 0.83743 0.94891 0.02377 0.02382 0.02091
WgtMeanSPE Year 10 5.02064 5.01946 5.02054 4.86949 6.11325 0.00220 0.00222 0.00200

WgtMedAPE Year 11 0.13736 0.13746 0.14004 0.13864 0.14794 0.01601 0.01565 0.01324
WgtMedSPE Year 11 0.01887 0.01889 0.01961 0.01922 0.02189 0.00026 0.00024 0.00018
WgtMeanAPE Year 11 0.76675 0.76674 0.76229 0.77587 0.88094 0.02255 0.02255 0.02006
WgtMeanSPE Year 11 4.28795 4.28721 4.23261 4.39925 5.82944 0.00181 0.00182 0.00166

WgtMedAPE Year 12 0.13216 0.13218 0.13473 0.13374 0.14230 0.01553 0.01517 0.01276
WgtMedSPE Year 12 0.01747 0.01747 0.01815 0.01789 0.02025 0.00024 0.00023 0.00016
WgtMeanAPE Year 12 0.73792 0.73789 0.73307 0.75075 0.85265 0.02204 0.02199 0.01958
WgtMeanSPE Year 12 4.15067 4.15066 4.09956 4.40651 6.01267 0.00179 0.00180 0.00164

WgtMedAPE Year 13 0.04375 0.04376 0.04451 0.04429 0.04697 0.01630 0.01580 0.01849
WgtMedSPE Year 13 0.00191 0.00191 0.00198 0.00196 0.00221 0.00027 0.00025 0.00034
WgtMeanAPE Year 13 0.26977 0.26978 0.26901 0.28023 0.31891 0.02430 0.02421 0.02993
WgtMeanSPE Year 13 0.69218 0.69227 0.69788 0.80137 1.11338 0.00307 0.00307 0.00342

Table 13: Lapse Rate Weighted Prediction Error Statistics
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