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Abstract

This paper explores the tuning and results of two-part models on rich datasets
provided through the Casualty Actuarial Society (CAS). These data sets include BI
(bodily injury), PD (property damage) and COLL (collision) coverage, each docu-
menting policy characteristics and claims across a four year period. The datasets are
explored, including summaries of all variables, then the methods for modeling are set
forth. Models are tuned and the tuning results are displayed, after which we train
the final models and seek to explain select predictions. All of the code will be made
available on GitHub. Data was provided by a private insurance carrier to the CAS
after anonymizing the data set. This data is available to actuarial researchers for well-
defined research projects that have universal benefit to the insurance industry and the
public. Our hope is that the methods demonstrated here can be a good foundation for
future ratemaking models to be developed and tested more efficiently.
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1 Introduction

In recent years, the rise of machine learning models in predictive analytics has led to

widespread adoption of these methods. They have proven to be effective modeling tech-

niques in many situations, but have not yet been widely adapted in the auto insurance

ratemaking due to the difficulty of explaining the results to regulators (Akinyemi and Leiser,

2020). Nevertheless, recent breakthroughs in explainable machine learning potentially allow

for these methods to be more widely applied in a ratemaking setting (Lundberg et al., 2020).

In this paper, we explore the successes and pitfalls of applying machine learning algo-

rithms to a suite of data sets obtained from the Casualty Actuarial Society. First, we explore

the data and consider some of the issues that could arise from data integrity. Then, mod-

eling techniques are described, including the algorithms applied and the methods used for

model training. Training results are reported and explored, after which final models are

trained. Finally, predictions are made on a test set and then explained using some of the

newer techniques alluded to above.

We hope that this exploration of machine learning applied to ratemaking stands as a

jumping off point for others who wish to bring the increased accuracy of machine learning

algorithms into the field. With both the code and data available, it will be easier to compare

new methods to the results posted here

2 The Data

The data used in this paper was obtained from the CAS. These datasets document the auto

policies of a large US-based insurance company across four years, including many variables

describing the policy holder, the time the policy was held for, and the number of claims and

costs associated with each policy.

2.1 The Three Data Sets

These policies are split into three different data sets, BI, PD, and COLL. Each data set has

columns for the ultimate cost of the policy and the ultimate claim count of the policy, as

well as the exposure (or duration) of the policy. There are a significant number of rows with

2



Description Num Records % Exposure Amount % Claim Count %

BI 30,342,067 100% 3,830,558 634,080,483 100.00% 32,293 100.00%

Zero exposure 6,724,652 22.16% - 6,958,737 1.10% 367 1.14%

Negative exposure 3,885,178 12.80% (33) 10,848,560 1.71% 606 1.88%

PD 20,201,841 100.00% 2,665,037 520,665,847 100.00% 151,842 100.00%

Zero exposure 4,138,323 20.48% - 6,981,221 1.34% 1,898 1.25%

Negative exposure 2,590,939 12.83% (129) 9,330,567 1.79% 2,487 1.64%

COLL 30,285,873 100.00% 3,835,828 443,291,671 100.00% 135,419 100.00%

Zero exposure 6,634,314 21.91% - 5,078,430 1.15% 1,621 1.20%

Negative exposure 3,889,473 12.84% (118) 7,738,811 1.75% 2,291 1.69%

Table 1: General Description of the three datasets

negative and zero exposures. The exact proportions are documented in Table 1.

2.2 The Variables and Values

The data consists of the columns “EARNED EXPOSURE”, “ULTIMATE AMOUNT”, “UL-

TIMATE CLAIM COUNT”, and explanatory variables “X VAR1” through “X VAR46”.

• “EARNED EXPOSURE” is the amount of time the policy was taken out for.

• “ULTIMATE AMOUNT” is the claim cost developed to ultimate, in US dollars. Gen-

erally the development factors are small in our datasets.

• “ULTIMATE CLAIM COUNT” is the number of claims filed for the given policy again

developed to ultimate. We rounded these values to the nearest whole number because

the development factors were not generally large and we wanted to use discrete models.

• “X VAR1” through “X VAR46” are 46 unidentified variables, all of which are discrete

(ordinal numeric or text string). We do know that “X VAR27” is state and “X VAR41”

is year, but do not know the individual levels.

We will explore each of these variables for all three data sets in the sections that follow.

2.2.1 EARNED EXPOSURE

As mentioned above, EARNED EXPOSURE is one of the more difficult variables to deal

with, as it has many negative and zero values. In our exploration and modeling of the data,
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Data Set Minimum First Quartile Median Mean Third Quartile Maximum

BI 0.0001 0.0822 0.2110 0.2385 0.3973 1.0028

PD 0.0001 0.0822 0.2138 0.2418 0.4028 1.9996

COLL 0.0001 0.0822 0.2110 0.2384 0.3973 0.9998

Table 2: Summary of EARNED EXPOSURE across the three data sets

Data Set % of Rows with ULTIMATE AMOUNT above 0

BI 0.16%

PD 1.06%

COLL 0.64%

Table 3: Percentages of positive ULTIMATE AMOUNT in the different data sets

we removed rows containing negative or zero values for EARNED EXPOSURE. A summary

of EARNED EXPOSURE across the three different data sets is given in Table 2.

2.2.2 ULTIMATE AMOUNT and ULTIMATE CLAIM COUNT

ULTIMATE AMOUNT and ULTIMATE CLAIM COUNT are dealt with jointly, as they

are similar in scope, and together can be used to compute the severity (or cost per claim)

of a policy. Both these variables are extremely right-skewed due to the fact that such few

rows actually have claims. Table 3 shows the percentage of rows in each data set where the

ULTIMATE AMOUNT was greater than zero and Table 4 shows the number of rows for

given numbers of claim counts in each data set.

A little more insight can be gleaned when looking at the distribution of the severity. The

severity is the ULTIMATE AMOUNT divided by the ULTIMATE CLAIM COUNT, only

including those rows that had a claim. Summaries for the severity for each data set are given

in Table 5 and density plots are shown in Figure 1. Note that the density plots are given in

the log scale on the x axis.
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BI PD COLL

Claim Count Num Rows % Num Rows % Num Rows %

0 19,700,470 99.8% 13,329,135 98.9% 19,636,069 99.4%

1 31,531 0.16% 141,107 1.05% 120,681 0.61%

2 218 0.001% 2,239 0.02% 5,260 0.03%

3+ 18 0.0001% 98 0.001% 76 0.0004%

Table 4: Counts of the rounded values of ULTIMATE CLAIM COUNT

Data Set Minimum First Quartile Median Mean Third Quartile Maximum

BI 1.1 2,842 8,821 19,231 21,300 732,953

PD -9,506 856 2,095 3,468 4,553 88,494

COLL -2,850 1,061 2,027 3,294 3,979 101,203

Table 5: Summary statistics for the severity for each data set

2.2.3 X VARs

The discrete (and sometimes ordinal) variables X VAR1 through X VAR46 are quite varied.

Some have many levels while others have few; some are balanced in their distribution between

levels but others are not. In Table 6, we give a characterization of all variables including a

brief description of each one. More comprehensive data regarding each individual level of

every variable can be found in the GitHub repository. See Appendix B for more information.

Variable Unique

Values

Description

X VAR1 5 Integer, ranging from 0 to 4 inclusive

X VAR2 2 Binary, 0 or 1. Nearly all observations are 0 so it is

thrown out in modeling

X VAR3 5 Integer, ranging from 0 to 4 inclusive

X VAR4 31 Integer, ranging from 1 to 31 inclusive

X VAR5 5 Integer, ranging from 0 to 4 inclusive

X VAR6 17 Integer, ranging from 0 to 16 inclusive

5



X VAR7 17 Integer, ranging from 0 to 16 inclusive

X VAR8 5 Integer, ranging from 0 to 4 inclusive

X VAR9 10 Integer, ranging from 1 to 10 inclusive

X VAR10 2 Character, “A” or “B”

X VAR11 8 Integer, ranging from 1 to 8 inclusive

X VAR12 5 Integer, ranging from 0 to 4 inclusive

X VAR13 4 Character, “B”, “C”, “D”, or “E”

X VAR14 5 Integer, ranging from 0 to 4 inclusive

X VAR15 4 Integer, ranging from 0 to 3 inclusive

X VAR16 9 Integer, ranging from 1 to 9 inclusive

X VAR17 5 Integer, ranging from 0 to 4 inclusive

X VAR18 7 Character, “A”, “B”, or “E” through “I”

X VAR19 2,062 A string with the form of an integer between 1 and 2529

inclusive preceded by an “A”. Left out of modeling due

to the high number of unique values.

X VAR20 5 Integer, ranging from 0 to 4 inclusive

X VAR21 17 Integer, ranging from 0 to 16 inclusive

X VAR22 23 Integer, ranging from 1 to 23 inclusive

X VAR23 11 Character, either a digit 1 through 9 inclusive, the letter

“U” or missing

X VAR24 11 Integer, ranging from 1 to 11 inclusive

X VAR25 24 Integer, ranging from 1 to 24 inclusive

X VAR26 5 Integer, ranging from 0 to 4 inclusive

X VAR27 48 String of two letters, alphabetically between “AA” and

“BY” inclusive. This variable represents state, but the

mapping of the levels to the states is unknown.

X VAR28 6 Integer, ranging from 1 to 6 inclusive

X VAR29 5 Integer, ranging from 0 to 4 inclusive

X VAR30 8 Integer, ranging from 1 to 8 inclusive

X VAR31 26 Integer, ranging from 1 to 26 inclusive

X VAR32 5 Integer, ranging from 0 to 4 inclusive
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X VAR33 6 Integer, ranging from 1 to 6 inclusive

X VAR34 56,817 String consisting of the letter “A” followed by a number.

Due to the high number of unique levels, it is left out

of modeling.

X VAR35 5 Integer, ranging from 0 to 4 inclusive

X VAR36 5 Integer, ranging from 0 to 4 inclusive

X VAR37 5 Integer, ranging from 0 to 4 inclusive

X VAR38 31 A string consisting of the letter “B” followed by an in-

teger between 1 and 31 inclusive

X VAR39 16 Integer, ranging from 1 to 16 inclusive

X VAR40 17 Integer, ranging from 0 to 16 inclusive

X VAR41 4 Integer, ranging from 1 to 4 inclusive. This variable is

the year of the policy, but the policies are not evenly

dispersed across the 4 levels.

X VAR42 5 Integer, ranging from 0 to 4 inclusive

X VAR43 11 Integer, ranging from 1 to 11 inclusive

X VAR44 5 Integer, ranging from 0 to 4 inclusive

X VAR45 17 Integer, ranging from 0 to 16 inclusive

X VAR46 31,064 String with 5 characters, all numbers and letters. Due

to the high number of unique values it is left out of

modeling

Table 6: Characteristics of the predictor variables

3 Modeling Techniques

In order to model the data, we use a two-part model where the first part predicts the

frequency of claims and the second part predicts the severity, or cost per claim. These

models are tuned separately, on the same set test data. Here we discuss the data preparation

that occurred before model tuning, as well as the methodology we used to tune the different

models.
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Figure 1: Distribution of the log of the severity for all data sets

3.1 Data Preparation

The initial data came in 21 separate files. There are 8 files for the BI data, 5 for the

PD data, and 8 for the COLL data. In order to work with this data as three separate

datasets, we combined these files in three distinct files. During this process we filtered

out any records where EARNED EXPOSURE was less than or equal to zero, and we also

rounded ULTIMATE CLAIM COUNT to the nearest integer. Furthermore, all rows with

an ULTIMATE CLAIM COUNT greater than three were set to three.

Once the data was cleaned, we needed to create the train, validation, and test sets of data

for all three data sets. This was done using the {caret} package function createDataPartition

in R, which gives a stratified sample along a variable so as to make sure the proportions are

similar in all three data sets (Kuhn, 2008). We used a split of 50% training data, 25%

validation data, and 25% test data for all three data sets.

Due to the imbalanced nature of the data sets, we also wanted to ensure that the model

was not extremely biased towards predicting zero. In order to accomplish this, we re-balanced

the training set so that it was perfectly balanced between the four classes (0 claims, 1 claim,

2 claims, 3+ claims). This required a combination of up-sampling and down-sampling, where

the 0 claim class was down-sampled to 3 million observations and the 1, 2, and 3 claim classes

were up-sampled to have 3 million observations each. Using bootstrap sampling (through

the sample n function in the {dplyr} package) we were able to create training sets that were

balanced in terms of frequency, with 12 million rows (Wickham et al., 2018).
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During the modeling stages, we used the X VARs as the predictors and the severity

or ULTIMATE CLAIM COUNT as the response (depending on which part of the model

we were tuning). However, we dropped four of the X VARs because they caused issues in

tuning. X VAR2 was often constant across the entire training set, and so was not useful

for predicting. X VAR19, X VAR34, and X VAR46 contained thousands of unique levels as

categorical predictors and were dropped due to the model complexity caused by the number

of levels. Of the variables that remained, those with only numbers as levels were treated

as ordinal (a regular numeric predictor) and those with characters defining categories were

treated as categorical predictors.

3.2 Model Tuning

Once the training, validation, and testing data were obtained, we needed to tune the models.

We worked in the h2o framework inside of R to rapidly tune the models (H2O.ai, 2021). The

basic layout for both parts was to loop over a predefined tuning grid where the parameters

were set to different values. In each loop, use the balanced training data to train the model,

and then use the validation data to compute metrics on that model. In each loop we also

computed the model predictions on the test data set, and saved them to a prediction data

frame. After storing the model tuning parameters and resulting metrics as a row of a data

frame, the algorithm continued to the next set of tuning parameters. This process was

repeated for all tuning parameters we defined, for all model types and across all three data

sets.

3.2.1 Frequency Model Tuning

To model claim frequency, we used the multinomial family of models with our four possible

classes (0 claims, 1 claims, 2 claims, and 3 claims). We first created a baseline generalized

linear model, to ensure that the predictions from the machine learning methods improved

upon its accuracy. Then, models were developed using a random forest algorithm, a gradient

boosted forest algorithm, and a deep learning algorithm (all as implemented in H2O).

Table 7 shows the tuning parameters used for the random forest models, Table 8 shows

the tuning parameters used for the gradient boosted forest models, and Table 9 shows the
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tuning parameters used for the deep learning models.

Model Parameter Possible Values

ntrees 100

max depth 20, 15, 10, 7, 5

min split improvement 0.001, 0.01

mtries 20, 7

histogram type “RoundRobin”

sample rate 0.632

categorical encoding “EnumLimited”

col sample rate per tree 0.8

seed 16

Table 7: Tuning Parameters for Random Forest Frequency Models

Model Parameter Possible Values

ntrees 300, 500, 1000

max depth 1, 2, 3, 5, 7, 10

learn rate 0.001, 0.0001

min split improvement 0.0001

distribution “multinomial”

sample rate 0.632

nbins cats 56

categorical encoding “Eigen”

col sample rate per tree 0.8

seed 16

Table 8: Tuning Parameters for Gradient Boosted Forest Frequency Models

3.2.2 Severity Model Tuning

Severity model tuning proceeded in a similar way to the frequency model tuning. First,

a baseline model was created using a simple linear model to predict the severity. Then,
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Model Parameter Possible Values

activation “Tanh”

hidden 100, [100, 100], [200, 200], [100, 100, 100]

adaptive rate FALSE

rate 0.1, 0.01, 0.005, 0.001, .0005

rate decay 0.5

momentum start 0.5

momentum stable 0.99

input dropout ratio 0.1

initial weight distribution “Normal”

initial weight scale 1

loss “Automatic”

distribution “multinomial”

stopping metric “logloss”

stopping tolerance 0.001

categorical encoding “EnumLimited”

seed 16

mini batch size 100

Table 9: Tuning Parameters for Deep Learning Frequency Models

random forest, gradient boosted, and deep learning models were tuned in H2O to predict

the severity. All these models were regression models, trying to predict the numerical value

of severity. Because the severity is very right-skewed, we also tuned the models to predict

the log of the severity with each model type and for each tuning parameter combination.

This helped improve the predictive power of the models in many cases.

The severity models tuned much more quickly than the frequency models because before

tuning the models we dropped all duplicate rows from the training data set and filtered

where ULTIMATE AMOUNT was greater than zero. This was possible because severity

was not unbalanced, so we did not need to up-sample or down-sample any part of the data.

Dropping duplicate rows allowed us to essentially undo the up-sampling that was done to

11



all rows with a claim.

Table 10 lists the tuning parameters used for the severity random forest models, Table 11

lists the tuning parameters used for the severity gradient boosted forest models, and Table

12 lists the tuning parameters used for the severity deep learning models.

Model Parameter Possible Values

ntrees 100, 200

max depth 3, 5, 7, 10, 15, 20, 30

min split improvement 0.01, 0.001, 0.0001

mtries -1, 20, 7

histogram type “UniformAdaptive”, “RoundRobin”

sample rate 0.632

categorical encoding “EnumLimited”

col sample rate per tree 0.8

seed 16

Table 10: Tuning Parameters for Random Forest Severity Models

Model Parameter Possible Values

ntrees 300, 500, 1000

max depth 1, 2, 3, 5, 7, 10

learn rate 0.001, 0.0001

min split improvement 0.0001

distribution “gaussian”, “gamma”, “laplace”*, “huber”*

sample rate 0.632

nbins cats 56

categorical encoding “Eigen”

col sample rate per tree 0.8

seed 16

Table 11: Tuning Parameters for Gradient Boosted Forest Severity Models

*Laplace and Huber distributions only used when not predicting the log of the severity
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Model Parameter Possible Values

activation “Tanh”

hidden 100, [100, 100], [200, 200], [100, 100, 100]

adaptive rate FALSE

rate 0.01, 0.001, 0.0001, 0.00001

rate decay 0.5

momentum start 0.5

momentum stable 0.99

input dropout ratio 0.1

initial weight distribution “Normal”

initial weight scale 1

loss “Automatic”

distribution “gaussian”, “laplace”

stopping metric “MAE”

stopping tolerance 0.001

categorical encoding “EnumLimited”

seed 16

mini batch size 50

Table 12: Tuning Parameters for Deep Learning Severity Models

4 Tuning Results

After the tuning process was complete across all three datasets for all model types and

parameter combinations, we set to work visualizing and summarizing the tuning results. In

this section we will explain the tuning results for each data set and each part of the model,

note that the metrics shown in these parts are calculated on the validation data set. We will

then look at the results when the predictions are combined and the metrics of the overall

two-part model are computed on the test data set.
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Figure 2: Visualization of the results from tuning random forests to predict claim frequency

on the BI data

4.1 BI Data

The models on the BI data performed the poorest out of the three datasets, which is under-

standable. Bodily Injury claims are the least common, and when they do occur they have

the largest range of severity. This leads to a lot of noise in the models and overall poorer

predictive performance.

4.1.1 Frequency Models

The most accurate frequency model was a deep neural network, but the neural networks

also had the largest range of accuracy. Random Forests performed best on average across

all tuning parameters.

4.1.2 Severity Models

In contract, neural networks performed quite poorly on severity for the BI data. Instead, we

found that gradient boosted models worked best, especially those with a smaller learn rate.

Nonetheless, the best MAE was well over 15,000 which is less than desirable.
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Figure 3: Visualization of the results from tuning gradient boosted forests to predict claim

frequency on the BI data

Figure 4: Visualization of the results from tuning deep learning models to predict claim

frequency on the BI data
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Figure 5: Visualization of the results from tuning random forests to predict severity on the

BI data

Figure 6: Visualization of the results from tuning gradient boosted forests to predict sever-

ity on the BI data (note that only models with the distribution tuning parameter set to

“Laplace” are shown since their MAE was much less than the other models)
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Figure 7: Visualization of the results from tuning deep learning models to predict severity

on the BI data
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Figure 8: Visualization of the results from tuning random forests to predict claim frequency

on the PD data

4.2 PD Data

The PD and COLL datasets were more conducive to modeling and running those datasets

through the tuning process resulted in more accurate models, in terms of logloss and MAE.

The PD dataset has the most claims out of the three datasets, and the least number of

records. These properties allow greater relationships to be drawn between covariates and

response and result in more accurate models.

4.2.1 Frequency Models

However, most of the increase in accuracy comes from the severity part of the model. The

frequency model tuning results are similar to those seen in the BI data, with the random

forest models being most consistent and hovering between .4 and 1. The gradient boosted

models performed quite poorly in predicting frequency on the PD dataset, and there were

some difficulties in tuning the neural networks that prohibited the entire tuning grid from

being run.
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Figure 9: Visualization of the results from tuning gradient boosted forests to predict claim

frequency on the PD data

Figure 10: Visualization of the results from tuning deep learning models to predict claim

frequency on the PD data
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Figure 11: Visualization of the results from tuning random forests to predict severity on the

PD data

4.2.2 Severity Models

The severity models for the PD dataset did much better than on the BI dataset, with MAEs

in the 2,500 range. The most accurate model was a gradient boosted forest, although neural

networks based on the Laplace distribution also performed very well. The model tuning in

these plots shows how the tuning grid did a sufficient job of exploring the parameter space

to find at least a local minimum in many cases.

4.3 COLL Data

Again, the COLL data was more adept for modeling than the BI data. These models are

the most accurate, and the tuning results give us the best metrics.

4.3.1 Frequency Models

Both the random forest models and the neural network models performed very well in pre-

dicting the frequency of claims across the dataset. The gradient boosted models again

performed poorly.
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Figure 12: Visualization of the results from tuning gradient boosted forests to predict sever-

ity on the PD data (note that only models with the distribution tuning parameter set to

“Laplace” are shown since their MAE was much less than the other models)

Figure 13: Visualization of the results from tuning deep learning models to predict severity

on the PD data
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Figure 14: Visualization of the results from tuning random forests to predict claim frequency

on the COLL data

Figure 15: Visualization of the results from tuning gradient boosted forests to predict claim

frequency on the COLL data
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Figure 16: Visualization of the results from tuning deep learning models to predict claim

frequency on the COLL data

4.3.2 Severity Models

The severity models on the COLL data had the lowest MAE out of all model tuning across the

three datasets. And again, neural networks and gradient boosted both performed strongly,

while random forest lagged behind. This is likely due to the inability to specify a target

distribution when training a random forest, whereas we were able to specify a heavy-tailed

distribution such as the Laplace distribution for the gradient boosted and neural network

models.

4.4 Two-Part Model

In additional to looking at the model tuning results for each individual part (frequency and

severity) of the two-part model, we also compared the predictions of the two-part model

against the test dataset. For each frequency and severity model, we predicted the test

dataset, and saved those predictions. Once all model tuning was finished, we were able

to compare two-part model predictions to the actual value of the test set. To do this, we

computed the expected value as predicted by the two-part model for each policy in the test

set for every combination of frequency and severity model.

In general, the better the frequency predictions and the better the severity predictions,
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Figure 17: Visualization of the results from tuning random forests to predict severity on the

COLL data

Figure 18: Visualization of the results from tuning gradient boosted forests to predict severity

on the COLL data (note that only models with the distribution tuning parameter set to

“Laplace” are shown since their MAE was much less than the other models)
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Figure 19: Visualization of the results from tuning deep learning models to predict severity

on the COLL data

the better the overall two-part model. However, the best individual models did not constitute

the best two-part model. This is likely due to the fact that the individual model parts were

measured using the validation dataset, while the overall two-part models were measured with

the test dataset.

The results of the two-part models can be compared with the performance of the individ-

ual model parts and then visualized. One of the most interesting visualizations was to view

the performance of the frequency model against the performance of the two-part model. In

Figures 20, 21, and 22 we see the resulting plots for the BI, PD, and COLL datasets.

As was seen in the training of the frequency models, the neural networks and random

forests performed best for predicting frequency while the gradient boosted forests lagged

behind. Also interesting is the convexity of the trend between the different model types.

While the MAE of the two-part model began to slow its rate of increase as the logloss of the

frequency model increase for neural networks, it seems to generally speed up in the case of

random forests in the same situation.

We can also compare the performance of the severity model parts to the performance of

the two-part model. For concision, we have placed these plots in Appendix D.
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Figure 20: Comparison of the logloss of the frequency model part to the MAE of the overall

two-part model for the BI data

Figure 21: Comparison of the logloss of the frequency model part to the MAE of the overall

two-part model for the PD data
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Figure 22: Comparison of the logloss of the frequency model part to the MAE of the overall

two-part model for the COLL data

5 Final Models

In the end, we determined the best final model for each dataset based on the MAE computed

on the test set of the two-part model.

5.1 BI Final Model

For the BI data, the best two-part model was made up of a neural network frequency model

and a neural network severity model. The frequency model had 100 nodes arrayed in a single

layer, and a learning rate of 0.01. The severity model had 300 nodes in three layers, with

each layer having 100 nodes each, trained on the log of the severity, and also had a learning

rate of 0.01. The overall two-part model had an MAE of 476.41 on the test dataset when

predicting the expected value of the cost.

5.1.1 Prediction Concerns for the BI Model

Even though we took care to balance the data, we wanted to ensure that the models with

the best MAE were not naively predicting zero. To do this, we compared the mean model
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prediction against the mean model prediction of all other models. When doing this, our

suspicions were confirmed.

The frequency part of the model assigned an average probability of 94% to zero claims,

when among the other models we would expect zero claims to be assigned around a 43%

probability. It also was the model that assigned the smallest probability to the one claim

class, on average. Furthermore, the average severity prediction for the severity model part

was about 50% lower than the average model, and only one other severity model had a lower

average prediction.

In short, what we found was that in spite of our efforts, the double neural network

combination had been over-fit to predict small values. To avoid this for the other two

datasets, we will limit our search for the best model to be only gradient boosted or random

forest models, which tend to be less over-fit and have more useful predictions. And as a plus,

these kinds of models can be explained using the mSHAP algorithm, which will allow use

to determine why the models made the predictions that they did (Matthews and Hartman,

2021).

5.2 PD Final Model

When we filtered out the neural network models, the best two-part model for the PD data

was made up of random forests for both the severity and frequency models.

For a complete analysis of this final model, including parameters and prediction expla-

nations, see Matthews and Hartman (2021).

5.3 COLL Data Final Model

For the COLL data, the best model (sans neural network type models) consisted of a ran-

dom forest for frequency and a gradient boosted forest for severity. The random forest for

predicting the frequency was made up of 100 trees with a max depth of 20 and each split

considering 20 different variables. It had a validation logloss of 0.424, which is fairly good

for a four-class classification problem. The gradient boosted forest ran over 1000 trees with a

max depth of one and a learn rate of 0.001. This model was trained with the untransformed

severity and used a Laplace distribution at its core.
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Additionally, the model’s predictions are less biased towards zero than we saw with the

neural networks in the BI data. The frequency model predicts zero about two-thirds of the

time and one 27% of the time. Furthermore, the severity model has an average prediction that

is about 50% more than the minimum model prediction, meaning it predicts a significantly

higher severity than the lowest models. In all, we are satisfied that the model predicts a fair

premium and is not excessively biased towards zero.

In the subsequent section, we will dig deeper into the final model for the COLL data.

Due to this, additional plots describing the distribution of the predictions of the final model

can be found in Appendix D.

5.4 Model Explanation Case Study

In the final section of this paper, we will explore a two-part model that was computed on the

collision dataset. The selected two-part model is the best COLL model where both parts of

the model are tree-based algorithms (gradient boosted forests or random forests). This will

allow us to present explanations of the final model predictions using the mSHAP algorithm,

a necessity in the regulated insurance industry (Matthews and Hartman, 2021).

Applying the mSHAP algorithm to a subset of the test dataset allows us to explain the

amount each variable contributed to the final prediction. The mSHAP algorithm builds off

of SHAP values, and its accuracy comes from advances that permit exact computations of

SHAP values (Lundberg and Lee, 2017; Lundberg et al., 2020).

In order to compute the SHAP values (which are necessary for applying mSHAP) of

our final model, we trained the model in python using the scikit-learn module (Pedregosa

et al., 2011). Using this, we could then obtain and save the SHAP values, which were saved

to a file and then imported into R in order to use the mSHAP R package to get the final

contributions (Matthews, 2021). Since the main purpose of computing the mSHAP values

was for visualization, we only computed SHAP values on 50,000 observations in our COLL

test dataset.

Figure 23 shows a summary plot of mSHAP values for the 10 most important variables

in our final two-part model. We see that X VAR41, which is known to be year, is the most

important variable, and that the state variable (X VAR27) is also one of the most important

variables. This plot also shows trends in the relationship between the variable value and the
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Figure 23: A summary of mSHAP values from 50,000 observations in the COLL test dataset
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Figure 24: An explanation of three different individual predictions on the COLL test dataset

using the mSHAP values

SHAP value. Generally, the extremes are correlated with extreme variable values, which is

interesting.

In addition to a summary plot, the mSHAP values of the final two-part model allow us

to create a plot showing how the model arrived at individual predictions. Three example

plots are shown in Figure 24, showing three different kinds of predictions.

These plots allow us to explain exactly how the model arrived at its prediction for the

expected cost of the given policy. They are created in R using the mSHAP R package, which

is available on the CRAN. With plots like these, actuaries can explain to regulators and

consumers why the insurance rates are set the way they are, and what factors contribute the

most to the insurance cost. Although we have explored many machine learning methods for

predicting the loss cost of a policy, this exploration is less valuable if the methods cannot be

applied in the field. The mSHAP algorithm provides the potential for two-part models to

be implemented in a regulated industry such as insurance.

6 Conclusion

In conclusion, there is great potential for exploration in the area of machine learning ap-

plied to two-part ratemaking models. The dataset obtained from the Casualty Actuary
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Society is a great opportunity for exploring these methods, and we have seen significant

improvements over classic generalized models in our results. Additionally, using machine

learning in ratemaking is potentially feasible due to the mSHAP algorithm, which explains

the predictions of two-part models and allows for transparency in insurance pricing.
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Appendices

A Data

The data used in this paper was obtained from the Casualty Actuary Society (CAS). Readers

interested in obtaining the data for their own research projects should email Brian Fannin

of the CAS a short proposal of the project they hope to do.

B CAS Repo

All the code used in the cleaning of the data, preparation of the data, modeling of the data,

and analyzing of the data can be found in the github repo at https://github.com/srmatth/CAS.

Additionally, this repo includes many of the resulting data sets from our analysis in the

output/ directory. Scripts ran on a server (with a large amount of RAM) are found in

CODE Server/, and code used to analyze the results and create plots can be found in

CODE Analysis/. There is also a CODE Reference/ directory which contains a couple of

files pointing out useful tips for working within the framework that we did.

For further information, see the .README file in the github repo.

C Computing Considerations

The train data for each of the three data sets had 12 million rows and 42 predictors. In

order to train these models, we used the BYU statistics department servers. These machines

had enough RAM to deal with the data in its raw format, and effectively model it. In our

experience, in order to model this data in the way that we did, H2O needs to have at least

50GB of memory allocated to the cluster.

After the initial hurdle of figuring out where and how we could model the data, we began

the process of running the model tuning RScripts on the servers. The severity models ran

fine (they use less data, see Section 3.2.2) and without too much difficulty, but tuning the

frequency models was more challenging. Aside from running slower, the Rscript would often

quit in the middle of the process for seemingly no reason. Many long hours were spent

babysitting these models and ensuring that they ran properly. Ultimately, we discovered

that part of the problem was the H2O package being updated in R without the core H2O
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cluster being updated on the servers. Once we realized this and fixed it, the frequency

models ran much smoother, although there were still some script failures. Overall, H2O is

very useful for modeling large data, but can be a little bit unstable when running for long

periods of time.

Aside from the lessons learned about H2O, we discovered many ways to save memory

and time when modeling. In each loop we wanted to save the predictions of the model on the

test set so that ultimately we could compute tuning metrics for the overall two-part model.

However, writing this data every loop was expensive, and we instead landed on a solution

that allows the user to input the save frequency, or how often the tuning results and the

predictions on the test data set are saved.

Another lesson learned was from the model combination where we computed the metrics

on the test set for the two-part model. Due to the large number of combinations of models,

we needed to ensure we were using as many cores as possible on the servers. To do this, we

used the futures package from the tidyverse in R that allows for multiple computations to

be run simultaneously (Vaughan and Dancho, 2021). In this framework, however, the data

is copied to each core individually, meaning that we had to be careful about how many cores

we set the process to work on, as a single instance can use up to 30GB of RAM. This process

could be made more efficient by storing the predictions for each model in a separate file,

instead of one large file like we did. That would allow the user to simply pass the two names

of the files to the parallel mapping, which requires almost no duplicated memory allotment.

D Additional Plots

Due to the exploratory nature of the paper, many plots were created that are not necessary

to include in the body of the paper. This section contains those plots, along with descriptions

of each one.

D.1 COLL Final Model Predictions
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Figure 25: The frequency model’s predicted probability of the final COLL model (only for

the zero and one claim classes)

Figure 26: The severity predictions of the final COLL model

Figure 27: The expected value predictions of the final COLL two-part model
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