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1 Introduction

Regime-switching models are important in finance and actuarial science because they are often
successful in simulating asset returns. These models fit the complicated nature of market risk
exposure more effectively and naturally than other models. Many factors affect market risk expo-
sure in addition to total returns. Policyholder behavior (lapses, mortality, morbidity, etc.), policy
riders (guarantees, look-backs, ratchets, etc.), industry and government forces (competition and
regulation), among others can all depend on the asset returns and affect the total risk exposure
from the market (Hardy, 2003, ch. 1; Booth et al., 2004, ch. 4). In these complicated settings, an
analytical solution is often unavailable and the asset returns will need to be simulated.

Regime-switching models have been used for these simulations for a variety of reasons. Regime-
switching models are very intuitive and, more importantly seem to fit the return data well. Many
different papers in the finance and economics literature (e.g. Cont, 2001; Ding and Granger, 1996;
Hommes, 2002; Lux, 2009; Rydn et al., 1998) discuss stylized facts apparent in many financial time
series (differing in both market and instrument). Regime-switching models are flexible enough to
incorporate these stylized facts in a very natural way.

Although regime-switching models have been successful, we propose a more flexible model that
clusters data based on both the value of the data as well as its proximity to adjacent observations.
Hereafter we discuss stylized facts of financial data, present our model, demonstrate its clustering
abilities, forecast data from the S&P 500, discuss results, and state conclusions.

Stylized Facts of Financial Data

Regime-switching models and asset returns rarely have significant autocorrelations. Given
the regime vector, observations from these models are independent, making it easy to remove
autocorrelation in the return series. Currently, the regimes are defined by a Markov-switching
process implying that the autocorrelation will decay geometrically.

The heavy tails inherent in asset returns are modeled well by regime-switching models. Even
with lognormal component distributions, adding regime-switching makes the tails thicker (Hardy,
2001). Conditionally, even after removing the volatility clustering, the returns continue to show
heavy tails. The tail thickness in both cases can be modified by adjusting the component distri-
butions. The flexibility in tail thickness also lends itself well to the imbalance of returns – large
negative returns are more common than large positive returns. Using a regime-switching model,
heavier tails can be specified for poor returns and lighter tails for strong returns.
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These models also describe volatility clustering and intermittency well. Periods of high vari-
ability and jumps are easily modeled as rare, high volatility regimes with extreme means within
a regime-switching model. When volatility persists, volatility clusters are grouped as observations
from the same regime.

In Hartman and Heaton (2011), we show that as the time scale becomes shorter, the number of
regimes in a regime-switching lognormal distribution grows, making the distribution less Gaussian.
The leverage effect is naturally handled in a two regime model where the first regime has a high
mean and low variance and the second regime has a low mean and high variance (Hardy 2001).
Finally, we notice that course-grained measures of volatility predict fine-scale volatility better than
the other way around. When estimating the regime-switching models in a Bayesian paradigm,
volatility estimates can be used from coarser data to inform the prior for models of fine-scale data.

These stylized facts which are handled well by regime switching models are also handled well
by our model. In the ensuing document, we will compare our model with regime-switching models
in their ability to cluster and forecast data.

2 Model

2.1 Sampling Model

Let St be the price of an asset (e.g., a stock index) at time t (for t = 1, . . . , n) and yt is the
return on the asset, defined as:

yt =
St
St−1

.

Under geometric Brownian motion (and, by extension, the Black-Scholes-Merton option pricing
model), yt is assumed to follow a lognormal distribution as follows:

log(yt) ∼ N(µ, λ)

and y1, . . . , yn are independent given µ and precision λ. This independent lognormal model does
not permit for variance persistence or jumps, both of which are visible in stock market data and
generally accepted in the finance literature . Both of those features can be intuitively incorporated
by allowing the µ and λ to vary between the observations:

log(yt) ∼ N(µt, λt)

As before, we assume independence among y1, . . . , yn given the parameters. For notational conve-
nience, let θt = (µt, λt).

We model the distribution from which the yt are drawn as a mixture of distributions of the
form F (θ), with the mixing distribution over θ being G. The prior for this mixing distribution will
be a modified Dirichlet process with mass parameter α and base distribution G0. This gives the
following model:

yt | θt ∼ F (θt)

θt | G ∼ G

G ∼ DP (G0, α)

2



2.2 Prior Distribution

The task is to estimate n couplets: θ1, . . . , θn. Given the limited data, efficiency can be obtained
by assuming there is a latent clustering yielding ties among the n vectors. The clustering is encoded
in a partition π = {S1, . . . , Sq} of the set S0 = {1, . . . , n} having the following properties: (i) Si 6= ∅
for i = 1, . . . , q (non-empty subsets), (ii) Si ∩ Sj = ∅ for i 6= j (mutually exclusive subsets), and
(iii) ∪qj=1Sj = S0 (exhaustive subsets). The number of subsets q for a partition π can range from
1 (i.e., all vectors belong to the same subset) to n (i.e., each vector is in a singleton subset). It is
sometimes convenient to represent a partition π as a vector c of cluster labels, where ci = j if and
only if i ∈ Sj, for i = 1, . . . , n and j = 1, . . . , q.

It is convenient to reparameterize as follows: θi =
∑q

j=1 φjI{i ∈ Sj}, where φj ∼ G0 and
π ∼ p(π), where G0 is a prior distribution from which φ1, . . . , φq are independently drawn and
p(π) is a prior distribution over partitions of the form π = {S1, . . . , Sq}.

The centering distribution for the Dirichlet process will be assumed to follow a normal-gamma
distribution. The precision λ will be assumed to follow a gamma distribution, and mean µ a
conditional normal distribution. Thus G0 will be distributed as follows:

G0 ∼ N(µ0, c0λ | λ) ∗Gam(a, b)

where µ0, c0, a (shape), and b (rate) are hyperparameters. The conjugacy of this model will allow
us to sample more efficiently when forecasting.

When p(π) ∝
∏

S∈π αΓ(|S|), G0 is known as the “centering” distribution of the Dirichlet process
and the model is the popular Dirichlet process mixture model. Instead, assume:

p(π) ∝
∏
S∈π

αΓ

(
1

|S|
∑
i∈S

hi(S)

)
, (1)

where hik it the attraction of item i to item k where hii = 1 and
∑

k 6=i hik = n − 1. The scaling
of hik is a key feature — it effectively leaves the total mass of the n − 1 items unchanged while
permitting the pairwise information to shift mass away from distant items and towards proximate
items.

Suppose, for example, that the information regarding clustering of n items can be expressed
in terms of an n × n distance matrix of elements dik giving the distance between items i and
k. Our framework can use any distance metric to define the distance matrix. Items i and k
with a large distance dik should have a small attraction hik to induce a low clustering probability.
Raising the reciprocal of distance to a power provides one potential transformation, i.e., for i 6= k,
hik ∝ (dik + ε)−t, where the temperature t is non-negative and ε is a small positive value to
ensure that all attractions are strictly positive. When examining stock returns over time, a natural
distance measure would be the temporal distance between yi and yk, or dik = |i−k|. Alternatively,
the clustering may only use information from the adjacent observations:

dik =

{
|i− k| if |i− k| ≤ 1

∞ if |i− k| > 1

This is similar to the regime-switching or hidden Markov models common in finance. We call t the
temperature as it has the effect of dampening or accentuating the proximity measurements. If the
pairwise information comes in the form of pairwise proximity pik, where large values are meant to
increase the likelihood of clustering, a simple definition of the attractions may be hik ∝ (pik)

t.
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Note that if there pairwise information is noncommittal, meaning the all distances or proximities
are equal, then hik = 1 for all i, k. Also, the pairwise information can be extinguished by setting
t = 0, leading to hik = 1 for all i, k. In this case, the partition distribution is the same as that
from the Dirichlet process.

3 Clustering

For the simulations and forecasts presented hereafter, for i 6= k we use the following distance
metric:

dij =

{
|i− j| if |i− j| ≤ 1

1000 if |i− j| > 1

This distance metric will place a much higher probability of an observation clustering with adja-
cent observations. The use of other distance matrices is discussed in the discussion and limitations
section.

To demonstrate this model’s ability to cluster data based on both the value of the asset return as
well as its proximity to other returns, we use data from the S&P 500 Index. If the attraction matrix
introduced in our model is not used, the clustering proceeds as the classic Dirichlet clustering model
(Figure 1). If the attraction matrix from our model is used, we get the results displayed in Figure
2 (page 5).

Figure 1: Dirichlet clustering. Each color represents one cluster.
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It is clear from Figures 1 & 2 that the attraction matrix incorporates the natural feel of
clusters more intuitively. This is a useful feature in our model. A key difference between the
classic Dirichlet process of clustering and our model are the means of the clusters. The Dirichlet
process has clusters whose means differ significantly, while our cluster means are closely centered
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Figure 2: Clustering with our model. Each color represents one cluster.
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around 0. Both models incorporate differing spreads. Although our model accounts for the varying
of both means and precisions, only the precisions seem to vary significantly when incorporating
the attraction matrix.

4 Simulation Study

One practical application of this model is its ability to simulate asset returns. This simulation
is based on algorithm 3 presented in Neal’s (2000) paper. Using n data points (y1, . . . , yn), p data
points (yn+1, . . . , yn+p) will be forecast on each iteration. Forecasting proceeds as follows:

1. Set initial values for yn+1, . . . , yn+p

2. Cluster y1, . . . , yn+p

3. Draw new values for yn+1, . . . , yn+p based on the data in the cluster

4. Repeat steps 2 & 3

At any given iteration, each yt will be associated with a cluster label ct. During the clustering
algorithm, the probability that yt has a cluster label c is proportional to a t-distribution with
degrees of freedom, location, and scale parameters ν, ω, and η respectively:

P (ct = c | yt, c−t) ∝ St(ν, ω, η)

where
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ν = n+ 2a

ω =

∑
yt + c0µ0

n+ c0

η =
(n+ c0)(n+ 2a)

2(n+ c0 + 1)
(
b+ 1

2

(∑
y2t + c0µ2

0 −
(
∑
yt+c0µ0)2

n+c0

))
and a, b, µ0, c0 are the prior hyperparameters.

This simulation provides posterior predictive distributions for yn+1, . . . , yn+p. Using these sim-
ulations, this model can predict the probability that an asset return will have a given event (e.g.
the probability that a return loses 6% in a 10 week period). Once these probabilities are ob-
tained, logistic regression can be used to determine how successful the model was in prediction.
The dependent variable is whether or not the event occurred, and the independent variable is the
predicted probability of the event.

4.1 Analysis of S&P 500 Index

Weekly asset returns from the S&P 500 were obtained for the years 1992-2013. Hyperparameters
were selected to be a = 2, b = .01, µ0 = 0 and c0 = 50. The simulation was iterated 100,000 cycles
and 50 observations were forecast. This simulation was done several times with mass parameters
ranging between .5 and 50. The autocorrelation of the simulation was calculated by assessing the
correlation between the yn+1 value and each consecutive forecasted value. As seen in Figure 3 (page
7), as the mass increased (and subsequently the number of clusters), short-term autocorrelation
increased and long-term autocorrelation decreased.

This flexibility in autocorrelation simulation is useful particularly if one is performing short-
term forecasting. Unfortunately, this model does not appear to simultaneously produce high
short-term autocorrelation and a persistent long-term autocorrelation. Regime switching models
still maintain a slight edge in this regard.

4.2 Analysis of S&P 500 Stocks

In order to evaluate the effectiveness of the predictions of the model, 100 stocks were randomly
selected from the S&P 500 in March 2013. Weekly returns through March 4, 2013 were gathered
for each stock. Stocks with fewer than 500 weeks of data were removed from the study (9 in total).
The data was then adjusted for the S&P market as follows:

log

(
yt
yt−1

)
− log

(
St
St−1

)
where yt is the value of an individual stock and St is the value of the S&P 500 at time t. For

each stock, a time interval of 100 weeks was randomly chosen and used to forecast 10 weeks of
stock returns using our model. Hyperparameters were set at a = 2, b = .01, µ0 = 0, c0 = 50, and
a mass parameter α = 10. Each stock iterated 10,000 times.

Using the simulation results, the probability that a stock would have a return worse than 6% in
10 weeks was calculated using the posterior probability distributions. Whether or not each stock
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Figure 3: Average ACF of forecasted data with mass parameter of .5 (left) and 50 (right)
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realized a return worse than 6% in 10 weeks was recorded and logistic regression was performed
to determine if there was a relationship. The stock data was also run through a regime switching
model with the same hyperparameters for a detailed comparison. The results are summarized in
Table 1.

Table 1: Logistic regression and prediction of a 6% loss in 10 weeks

Our Model
Estimate Std. Error z value p value

Intercept -1.7468 0.8903 -1.962 0.0498
Posterior Probabilities 2.8871 2.7749 1.040 0.2981

Regime Switching
Estimate Std. Error z value p value

Intercept -2.060 1.192 -1.729 0.0839
Posterior Probabilities 3.762 3.641 1.033 0.3015

Predictions Actual
Our Model 0.3022

0.2967
Regime Switching 0.3150

Additionally, the probability that a stock would have two or more 3% losses in 10 weeks was
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also calculated, whether or not this occurred was recorded, and logistic regression was performed
(Table 2).

Table 2: Logistic regression and prediction of two or more 3% losses in 10 weeks

Our Model
Estimate Std. Error z value p value

Intercept -8.155 2.407 -3.387 0.000705
Posterior Probabilities 9.356 2.701 3.464 0.000532

Regime Switching
Estimate Std. Error z value p value

Intercept -8.928 2.817 -3.169 0.00153
Posterior Probabilities 10.084 3.123 3.228 0.00124

Predictions Actual
Our Model .8732

0.5165
Regime Switching .8874

The results of this analysis indicate that our model produces equivalent results to the regime-
switching models. However, these models are far from perfect. For example, when predicting a 6%
loss in 10 weeks, both models do not have significant p-values, but their overall estimates are very
precise. When predicting two 3% losses in 10 weeks, the opposite occurred; both models had high
prediction, but inaccurate estimates. Despite these limitations in prediction, the models produce
equivalent predictions.

5 Discussion & Limitations

When comparing autocorrelation between the regime-switching model and our model, it is
important to note that autocorrelation is calculated differently for the two models. For the regime-
switching models, one large simulation was performed and the ACF was calculated on this one
simulation. Our model, which generates many simulations in order to provide a posterior predictive
distribution, determined the correlation between the yn+1 and each subsequent observation in
the simulation. In short, the regime-switching model calculated the ACF from one simulation,
and our model’s autocorrelation is an aggregate measure of many simulations. Therefore, the
autocorrelation comparison may be limited.

This model does not perform as quickly as the regime switching models. Although we provide
greater flexibility in autocorrelation decay (i.e. the ability to increase short-term autocorrelation
by increasing the mass parameter), this does not provide more accurate results. Further research is
needed to determine if there are other advantageous properties of this model over regime-switching
models.

Another limitation of this analysis is the potential for survivor bias in our sample of companies
from the S&P 500. A comprehensive set of data for all companies which have ever been part of the
S&P 500 was unavailable at the time of analysis. Thus the results of our stock simulations, sampled

8



from current members of the S&P 500, is limited since it does does not account for companies
which failed. It is unknown how predictions would have changed if we had accounted for companies
which either failed or are no longer part of the S&P 500.

As mentioned previously , the distance matrix for this model can be chosen arbitrarily. This
is a useful feature of our model. While this feature of our model has been explored, preliminary
results indicate this did not significantly affect the autocorrelation. Perhaps applying this model
to different setting will make this feature more useful.

6 Conclusion

Overall, this model successfully clustered the data based both on the value of the asset return,
as well as its proximity to neighboring returns. In particular, our model was successful in capturing
clusters based on their precision. This model produced predictions comparable to current regime-
switching models. The increased flexibility in autocorrelation decay may be useful in special cases
performing short-term forecasting. However, this model is slower than regime-switching models
and may therefore not be preferred in many instances.
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