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Abstract

Standard regression models are often insufficient to describe the complex re-

lationships that are used to predict healthcare claims. A Bayesian nonparametric

regression approach is presented as a flexible regression model that relaxes the as-

sumption of Gaussianity. The details for implementation are presented. Bayesian

nonparametric regression is applied to a data set of claims by episode treatment

group (ETG) with a specific focus on prediction of new observations. It is shown

that the predictive accuracy improves compared to standard linear model as-

sumptions. By studying Conjunctivitis and Lung Transplants specifically, it is

shown that this approach can handle complex characteristics of the regression

error distribution such as skewness, thick tails, outliers, and bimodality.

JEL Codes: C11; C46; I11
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1 Introduction

A number of data-driven problems in insurance can be modeled using regression tech-

niques. These will use a number of covariates, such as age or gender, that relate to

an independent variable, such as claim costs or premium rates. A standard regres-

sion model, however, inherently assumes characteristics of the data, including inde-

pendence, Gaussianity, and linearity (Neter et al., 1996). As these assumptions are

typically not met, other models have been proposed to do such things as account for

outliers (Rousseeuw et al., 1984) and thick tails (Shi, 2013).

The inherent non-Gaussian nature in insurance data has been addressed by using

alternative distributions in a generalized linear model such as the gamma and inverse

Gaussian (De Jong et al., 2008), the generalized beta (Frees and Valdez, 2008), and

others. Other flexible approaches have been proposed such as tweedie regression, quan-

tile regression (Kudryavtsev, 2009), spliced distributions (Gan and Valdez, 2017), and

mixture models (Miljkovic and Grün, 2016).

Nonparametric Bayesian modeling has recently been introduced to the actuarial

literature as a powerful tool for modeling non-Gaussian densities (Fellingham et al.,

2015; Hong and Martin, 2017). This work has shown how powerful the Bayesian

nonparametric framework is for handling characteristics of the data such as heavy

tails, skewness, or even bimodal distributions. They have also shown an increase in

predictive power.

The purpose of this paper is to explore the application of Bayesian nonparamet-
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ric regression to healthcare claims. The framework that is presented extends past

density estimation into flexible distributional assumptions on regression relationships.

Bayesian nonparametric regression was introduced in the 90’s (Müller et al., 1996). It

has since been extended to general ANOVA models (De Iorio et al., 2004) and survival

relationships (De Iorio et al., 2009).

This paper will serve to describe methodology for a certain nonparametric Bayesian

model which has the potential to improve a number of regression relationships in actu-

arial applications. The specific utility this regression will also be shown by analyzing

a data set of health care costs by episode treatment group. These have been shown

to exhibit non-Gaussian densities (Huang et al., 2017). In some cases, adding covari-

ate information accounts for a non-Gaussian density, but as we will see, by adding

covariates of age and gender, the error distribution is still considerably non-Gaussian.

While the implementation of Bayesian nonparametric regression presented here will

allow the readers to design and use their own algorithms, the DPpackage in R (Jara

et al., 2011) already contains a version of Bayesian nonparametric regression that can

be used without the need to write up personalized algorithms.

Section 2 provides details for the dependent Dirichlet process ANOVA model used

for bayesian nonparametric regression. Details on using this model for a particular

analysis given a data set are given in Section 3. The ETG data analysis is shown in

Section 4.
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2 Bayesian Nonparametric Regression

A simple regression model with a single covariate could be written as

yi = f(xi) + ε.

A number of methods of fitting this model could be considered Bayesian nonpara-

metric regression. For example, f(xi) could have a parametric structure and ε has a

DP prior, such that ε|G ∼ G, and G ∼ DP . On the other hand, ε could be a stan-

dard parametric distribution, such as N(0, σ2), and f(xi) could have a flexible mean

structure, such as using a basis function expansion or splines (Eilers and Marx, 1996;

Vidakovic, 1998). Such procedures as Gaussian process regression (Gramacy and Lee,

2008) and regression trees (Chipman et al., 1998) are also considered semiparametric

or nonparametric.

Here we consider fully nonparametric regression from a Bayesian standpoint. The

general idea is to apply a dependent Dirichlet process (DDP) (MacEachern, 1999) to

the joint parameter space of the regression coefficients. In this approach, the standard

parametric forms of both the mean function and the error process are replaced with a

more flexible structure.

2.1 Dependent Dirichlet Process

A dependent Dirichlet process is the basis for fully nonparametric regression. DDPs

can be considered a prior on families of random probability measures on some domain
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D. Let GD be a DDP(α,G0,D). Then

GD =
∞∑
l=1

wlδθl,D

where each θl,D = {θl(x) : x ∈ D} are independent realizations from a stochastic

process G0,D which lives on the domain D and the weights arise from stick-breaking

where wl = ξl
∏l−1

i=1(1 − ξi) and ξ
i.i,d,∼ Beta(1, α). The main difference between DDPs

and standard Dirichlet processes is that the point masses are actually realizations from

a base stochastic process, G0,D, as opposed to some base distribution.

The distribution of a finite number of points x = (x1, x2, ..., xn) in the domain D

can be constructed as a mixture of draws from the finite dimensional distribution of

G0,D, meaning that if f(x) = GD then (f(x1), f(x2), ...., f(xn)) ∼ Gx where Gx =∑∞
l=1wlθl,x where θl,x

i.i.d.∼ G0,x and G0,x is a multivariate distribution arising from the

joint distribution of finite points on G0,D. A typical example of this is when G0,D is

a Gaussian process. Then G0,x is a multivariate normal distribution with mean and

variance as functions of the points in x according to the mean function and covariance

structure of G0,D.

Like standard Dirichlet processes, DDPs can be mixed with distributions for con-

tinuous covariates. Consider a mixture of multivariate normal distributions where the

mean vector is mixed with a DDP prior. Then if y = (f(x1), f(x2), ..., f(xn)) then

y ∼ g(y),

g(y) =

∫
φ(y|µ,Σ)dGx(µ),

where µ = (µ(x1), µ(x2), ..., µ(xn)) and Gx(µ) =
∑

i=1wlδθl,x where θl,x
i.i.d.∼ G0,x are

multivariate realizations from a base joint distribution G0,x. A practical way of writing
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this is

y ∼ g(y),

g(y) =
∞∑
l=1

wlφ(y|µl,Σ)

µl
i.i.d∼ G0,x, l = 1, 2, ..., .

As in all these examples, the weights, wl arise from stick-breaking. Another extension

is to include the covariance matrix Σ as atoms in the DDP, leading to both µl and Σl

being drawn jointly from the base distribution G0,x.

2.2 DDP ANOVA

These ideas can be extended to a regression setting. A DDP ANOVA extends DDPs

to include covariate information (De Iorio et al., 2004, 2009). Let zi be a vector of

covariate information for a specific record, zi = (1, zi,1, zi,2, ..., zi,p)
′. Then a DDP

ANOVA model for y = (y1, ..., yn)′ is

y ∼ g(y) (1)

g(y) =
∞∑
l=1

wlφ(y|z′βl,Σl) (2)

(βl,Σl) ∼ G0(ψ) l = 1, 2....., ψ ∼ π(ψ) (3)

wl = ξl

l−1∏
i=1

(1− ξi), ξ
i.i,d,∼ Beta(1, α), l = 1, 2, ... (4)

In this model, the atoms drawn from the base distribution are the regression coefficients

and the covariance. A few common simplifications are setting Σl = σ2
l In and then

constructing G0 such that σ2
l and βl are a priori independent. The base distribution
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will also have parameters ψ that can have hyperprior, π(ψ).

The result of this construction of a regression model is flexible relationships between

the covariates and the independent variable and a flexible error structure. Conditional

on a certain atom index l, the mode is a normal linear regression model, but by mixing

on the infinite set of all atoms, the normal mixture has full support on the entire space

of covariate and error distributions, which essentially means that there is no regression

relationship that the DDP ANOVA model cannot represent.

For this paper we use the following base distribution and hyperpriors.

G0 = N(β|µβ,Σβ)× IG(σ2|aσ, bσ)

µβ,Σβ ∼ NIW(µβ,Σβ|µ0, κ0, ν0,Ψ0)

aσ ∼ Gamma(aσ|ζa, ηa), bσ ∼ Gamma(bσ|ζb, ηb),

Where IG represent an inverse gamma distribution and NIW represent a normal-inverse

Wishart distribution. Hyperprior values must be set for µ0, κ0, ν0,Ψ0, ζa, ηa, ζb, and ηb.

The parameter α can be learned using a prior or simply fixed. Depending on the size

of the data, the choices for hyperpriors may play an important role in the he results of

the analysis, so they must be chosen carefully. µ0 and Ψ0 must be chosen to represent

prior belief in the regression coefficients and the covariance, where κ0 and ν0 are chosen

to represent the respective confidence in the prior belief of µ0 and Ψ0. The gamma

hyperpriors could be chosen to yield expected values for aσ and bσ that represents belief

in the variance of the regression model.

To aid in choosing priors that fit with interpretations, the data should be standard-

ized, meaning that the mean of variable is subtracted off of each data point in that

variable and is divided by the standard deviation of the variable. Results will not be
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affected by this transformation as they can easily be transformed back to the original

scale to make any specific inference.

3 Posterior Inference

For a regression problem with n observations and a p predictor variables, a fully non-

parametric approach to Bayesian regression can be achieved through the model in

equations (1) through (4). The key features of the estimation procedure is a Gibbs

sampler where each unknown variable is drawn from conditional distributions given all

the other parameters.

The infinite sum in Equation (2) is approximated by a finite sum, which can only

be done with careful consideration of the expected number of components. This allows

the individual data points to be assigned to specific latent clusters, providing nearly all

parameter updates to be conjugate. Details are found in Appendix A and the steps of

prediction of new observations, which is used extensively in the next section, is found

in Appendix B.

4 Modeling Claims by Episode Treatment Group

Episode Treatment Groups (ETG) is a classification scheme for a variety of conditions

that require medical services. ETGs are used by to help predict the future costs of a

particular book of business.

As health insurers are also interested in the uncertainty associated with predic-

tions of future costs, an accurate representation of the distributional characteristics

of the ETG summaries is important. This idea is explored for ETGs in Huang et al.

(2017) where a number of different modeling approaches were taken to model the ETG

8



densities. We extend that exploration here using Bayesian nonparametric regression

by adding covariate information and estimating regression relationships as opposed to

densities. This approach is shown here as an illustration of the usefulness of Bayesian

nonparametric regression and not necessarily a case study of ETG behavior.

Each record has two covariates, age and health, along with the healthcare charges.

Age will be treated as a continuous variable. The summary statistics of these covariates

vary widely based on the ETG as some diseases mainly impact certain demographic,

such as pregnancy. In the cases where gender is incredibly skewed in favor of one gender

or another, gender was left out as a covariate and only age was used.

To display the breadth of the advantage Bayesian nonparametric regression affords,

we will analyze the data for all 347 ETGs. However, because the data sets can be quite

large, only subsets are used in most cases. Both Bayesian nonparametric regression

and a Bayesian linear model are fit for each ETG. We then explore the attributes of

the models with two specific ETGs: Conjunctivitis and Lung Transplants, a large and

small sample respectively.

4.1 Results for Subsets of 347 ETGs

For each ETG, a subset of 1,100 data points were chosen at random, or all the data

points were used if the size of the group was less than 1,000. The DDP ANOVA model

as well as a Bayesian linear regression model was fit to 1,000 data points of each subset

and then 100 was left out to explore the predictive accuracy of the models. The prior

values for the DDP ANOVA model are µ0 = (0, 0, 0)′,Ψ0 = I3, κ0 = 10, ν0 = 10, ζa =

10, ηa = 2, ζb = 10, and ηb = 2. These priors were chosen to match the standardized

data, so without covariate information we expect the data to have mean 0 and variance

1, and also to reflect the proper uncertainty in the parameters. The posterior draws
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were only sensitive to prior information in the cases where the sample size of data was

smaller than about 100.

The Bayesian linear model was also fit. This model was constructed in a similar

way as the DDP ANOVA model would be if there were one cluster with all the data.

As such, we use all the same priors and hyperpriors for the parameters β and σ2.

Three metrics are used to determine the quality of the model fit. The first is

the mean squared prediction error (MSPE) for the observations that were held back

from the model fit. While MSPE is an important tool to evaluate prediction, it only

accounts for the mean of the posterior predictive distribution. To more accurately

asses the overall quality of the posterior predictive samples we also use continuous

rank probability score (CRPS) to evaluate prediction accuracy. If y(1), ...., y(B) are B

samples from a fitted distribution and yT is an observation, then CRPS is

CRPSy =
1

n

B∑
i=1

(y(i) − yT )2 +
1

n2

B∑
i=1

B∑
j=1

(y(i) − y(j))2 (5)

The last metric used is to assess penalized in-sample model fit. This is the Deviance

Information Criterion. It is analogous to Akeike’s information criterion and Bayesian

information criterion for model fits, but is more appropriate for Bayesian output when

the model fit is given in terms of samples from the posterior distribution of parameters.

For all three of these metrics, lower values are better.

Figure 1 shows the MSPE and the CRPS for every ETG used in the analysis. The

MSPE is nearly indistinguishable between the two models, meaning that electing to

have more flexible distributional assumptions did not improve the point estimate much.

However, the CRPS, which takes into account the distributional fit, suggests that the

Bayesian non-parametric regression significantly improves the prediction performance.
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Figure 1: CRPS and MSPE values are shown for the BNP regression model and for
the Bayesian linear model. The CRPS shows a significant improvement using the BNP
and the MSPE shows little to no improvement.

Metric BNP BLM
Average MSPE 3.002 3.013
Average CRPS 1.868 2.146

Count Lower MSPE 161 159
Count Lower CRPS 316 4

Table 1: Some key comparisons between the prediction metrics for the two models.
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Figure 2: The DIC value is shown for the two models. The BNP regression model is
consistently better.

Table 1 shows some additional values to support these conclusions. On average,

the MSPE for the BNP model was only 2% better, but the CRPS for the BNP model

was 14% better on average than the standard linear model. The implication of this

result is that while point estimates of future predictions may not suffer as much from

poor distributional assumptions, results that rely on the predictive distribution, such as

percentiles, confidence intervals, and a variety of other things that healthcare insurers

are interested in, will be largely affected.

For comparing the in-model fits, the DIC favored the BNP regression model for

every single ETG, suggesting that the extra parameters required in the BNP regression

model were greatly improving the model fit in every case. The average improvement for

the DIC from using BNP regression was 38%. While prediction was clearly affected by

the more flexible model fit, in-sample diagnostics show an even greater improvement.
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Figure 3: Empirical densities of the total charges for the conjunctivitis ETG for a
number of covariate combinations.

4.2 Conjuctivitis

Conjunctivitis was chosen as a special case to explore because it has many observations

and the distributional features are especially non-Gaussian. The distribution is even

bimodal in many cases. This non-Gaussian behavior can be seen clearly for the log

charges in Figure 3. The left tail is wider than a Gaussian tail and there is an extra

mode. With the information included in the study, it seems that this mode cannot

be explained by the covariates alone and a more flexible distributional assumption is

appropriate.

A Bayesian linear model and the DDP ANOVA model were fit to the training data

set, which comprised 90% of the data, a total of 160,228. The other 10% was left out

to compute MSPE and CRPS to analyze predictive accuracy. The median values and

95% credible intervals for the coefficients using the Bayesian linear model are shown in

Table 2 along with the average effects from the nonparametric regression model, where
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2.5% 50% 97.5%

BLM
β̂1 0.0791 0.0841 0.0890

β̂2 -0.01 −0.000008 0.01

BNP
β̂1 0.0714 0.0768 0.820

β̂2 0.0032 0.011 0.0187

Table 2: Median and 95% credible interval for the sampled coefficients for the BLM
and the average effects of the BNP regression model.

β̂1 is the coefficient for age and β̂2 is the coefficient for gender. The average effects for

the BNP model is found for each sample by taking a weighted average of the atoms,∑N
l=1wlβl. Table 2 shows that the Gaussian assumption leads to no effect of gender,

where the BNP model is able to detect an effect, although it is small.

Table 3 lists the comparison metrics for the two model fits. Even with the bimodal

error structure, the point estimate for the linear model is not far off from the more

flexible model. The CRPS and DIC are both considerably better for the BNP regression

model. The posterior predictive distribution is plotted for both models for an 18 year

old female in Figure 4. The posterior predictive distributions are overlaid the histogram

of all 18 year females in the data set. The extra bump in the left tail is accurately

captured by the posterior predictive of the BNP regression model. To try and capture

the tail, the BLM model gives a wider prediction than is necessary.

Metric BNP BLM

MSPE 0.8375 0.8371
CRPS 0.938 0.998
DIC -398,000 -250,000

Table 3: Some key comparisons between the prediction metrics for the two models for
the Conjunctivitis ETG.
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Figure 4: The posterior predictive distribution for the log charges of an 18 year old
female with conjunctivitis overlaid the histogram of the data of all 18 year females in
the ETG data set.

4.3 Lung Transplant

Lung transplant was also chosen to examine more carefully because it is a smaller

data set. The data cannot be subsetted the same way to find complete histograms

of certain covariate combinations, as was the case for conjunctivitis. The data is still

skewed, which means that it is unlikely that the Gaussian assumption for the error

structure is appropriate. To account for the outliers, the BNP model will predict

thicker tails in the posterior predictive distribution. The BLM model will just get a

wider variance.

Again, several data points were left out of the analysis to be used in prediction.

The posterior predictive distribution for 4 of those individuals are shown in Figure 5.

The wide variance in the BLM predictions can be seen. The thicker tails in the BNP

regression model is difficult to detect by eye, but they are thicker tails than a standard

Gaussian. In all 4 cases, the actual observation, which, again, wasn’t used in the model
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Figure 5: The posterior predictive distribution for the log charges of 4 individuals left
out of the analysis for prediction for the Lung Transplant ETG.

fit, is well within the bounds of both prediction intervals. This actual observation is

shown in the plots by a vertical spike.

Metric BNP BLM

MSPE 0.535 0.524
CRPS 1.246 3.426
DIC 98 172

Table 4: Some key comparisons between the prediction metrics for the two models for
the Lung Transplant ETG.

The MSPE is actually lower for the BLM model, as seen in Table 4. But the wider

variance leads to poor distributional accuracy and a much higher CRPS and DIC for

the predictions.
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5 Conclusion

The utility of a non-Gaussian regression relationship has been illustrated for healthcare

data in a number of past work. This paper has served to introduce Bayesian non-

parametric regression as a very powerful tool for flexible regression. It can be used to

model a wide variety of error terms. The DDP ANOVA model is useful for continuous

variables as the independent variable. Other nonparametric Bayesian models have been

introduced for other variable types including in multivariate and mixed-type settings

(Kottas et al., 2005; Dunson and Xing, 2009; DeYoreo et al., 2015).

Other extensions could be applied from the literature. One in particular that may be

useful is to make the weights of the DDP be dependent on the covariate information.

The mixture used in the error distribution can then be covariate dependent. For

example, in the conjunctivitis example,the younger patients had a stronger mode in

the left tail than the older patients. This can be modeled explicitly by making the

weights depend on the covariates.

As mentioned in the introduction, a version of Bayesian nonparametric regression is

contained within the DPpackage in R (Jara et al., 2011). This allows these techniques

to be used without the effort of constructing personalized algorithms.

A Blocked Gibbs Sampler

As with several problems in Bayesian statistics, inference for the DDP ANOVA model is

done by generating posterior samples of the unknown parameters. There are a variety

of methods of sampling from the posterior distribution of atoms from a dependent

Dirichlet process model. The one we will use here is called blocked Gibbs sampling.

The main benefit of this method is computational simplicity. Theoretically, the other
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sampling techniques such as using full conditionals or slice sampling will yield similar

results.

A.1 Finite Approximation

When using blocked Gibbs sampling the number of atoms in infinite mixture seen in

equation (2) is truncated to N distinct components, where N < n. The danger in this is

that if N is chosen to be too low, then there will not be enough predetermined clusters

as s needed for the data. For a specific value of α the approximate expected value ofN is

E(N |α) ≈ α log
(
α+n
α

)
and the approximate variance is V ar(N |α) ≈ α

(
log
(
α+n
α

)
− 1
)
.

This information could be useful to determine an appropriate value to fix N . For

example if there are 1000 data points and α = 3, then the expected value for N is

approximately 17.4 and two standard deviations above that is approximately 25, so

setting N to a number larger than 25 would be reasonable. In the posterior samples it

will be possible to check the number of clusters that were actually used. If that number

is close to or equals N in some of the samples, the value for N may not have been

adequate and the analysis should be redone with a larger number of fixed clusters.

With the truncation of clusters, there will now be only N weights, with the re-

quirement that
∑N

l=1wl = 1. To ensure this, only the first N − 1 weights will

be found through stick-breaking. The final one will be set to be the remainder,

wN = 1 −
∑N−1

i=1 wl =
∏N−1

l=1 (1 − ξl). The expected value of this final weight will

be E(wN |α) = (α/(α + 1))N−1. So as N increases, this value will get closer to 0,

which is desirable for consistency in the number of clusters for our choice of N . As α

increases, this value goes up, which means a higher N is needed to ensure that this

value is close to 0.
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A.2 Latent Assignment Variables

Another feature of blocked Gibbs sampling is latent assignment variables. There is one

assignment variable for every observation, L1, ..., Ln. These can take in integer values

between 1 and N , assigning each observation to one of the N clusters. Equations (1)

and (2) in this case can be rewritten as

yi|zi, Li ∼ N(yi; z
′
iβLi

, σ2
Li

) (6)

Li|w ∼
N∑
i=1

wlδl(Li) (7)

A.3 Gibbs Sampling

The actual samples will be taken from the posterior using Gibbs sampling, which is

sampling a subset of the variables conditional on the data and the most recent sample

of all the other variables and then rotating through other subsets of the variables.

The subsets we use are (1) the N atoms of regression coefficients β1, ...,βN , (2) the

N variance atoms, σ2
1, ..., σ

2
N , (3) the weights w1, ..., wN , (4) the assignment variables

L1, ..., Ln, (5) the hyperpriors µβ,Σβ, aσ, and bσ, and (6) the value for α.

1. The regression coefficient atoms will be sampled one at a time. For coefficient

βl, the data itself is subsetted. Let y(l) and z(l) be the subsetted independent

variable and design matrix respectively where record j is included only if Lj = l.

The samples are drawn for βl from the distribution

βl|· ∼ N(βl|µ∗β,Σ∗β) (8)

where Σ∗β = (z(l)z(l) + Σ−1β )−1 and µ∗β = Σ∗β(z(l)′y(l) + Σ−1β µβ).
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2. The subsetted data will also be used to draw samples for σ2
1, ..., σ

2
N , using the

conditional posterior

σ2
l |· ∼ IG

(
σ2
l |aσ +Ml/2, bσ + .5

(∑
Li=l

y2i + µ′βΣ−1β µβ + µ′∗β Σ∗−1β µ∗β

))
(9)

where Ml = |Li = l is the size of the subset.

3. The weights are found using stick-breaking, although conditional on the align-

ment variables, ξl ∼ Beta(1 + Ml, α +
∑n

j=l+1Mj) for l = 1, ..., N − 1. Then

wl = ξl
∏l−1

i=1(1− ξi) for l = 1, ..., N − 1 and wN = 1−
∑N−1

i=1 wi

4. The assignment variables are drawn from a discrete distribution where

Pr(Li = l) ∝ wlφ(yi|z′iβl, σ2
l ).

5. The base distribution is assumed to be separate in our formulation although it

could easily be whatever the user wishes. For µβ and Σβ, posterior samples can

be taken from

µβ,Σβ|· ∼NIW(µβ,Σβ|
1

κ0 +N
(κ0µ0 + nβ̄), κ0 + n, ν0 + n,

ψ +
N∑
l=1

(βl − β̄)(βl − β̄)′ +
κ0N

κ0 +N
(β̄ − µ0)(β̄ − µ0)

′)

The posterior samples for bσ are drawn from

bσ|· ∼ Gamma(bσ|ζb +Naσ, η +
N∑
l=1

1σ2
l )

There is no conjugate sampler for aσ. It can be drawn using a Metropolis-
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Hastings algorithm, where a proposal is made for a new value of aσ given the

previous value. If this generating distribution is g(a∗σ|aσ) then the new value a∗σ

is accepted with probability

min

(
1,

∏N
l=1 IG(σ2

l |a∗σ, bσ)Gamma(a∗σ|ζa, ηa)g(aσ|a∗σ)∏N
l=1 IG(σ2

l |aσ, bσ)Gamma(aσ|ζa, ηa)g(a∗σ|aσ)

)

6. If given a Gamma(aα, bα) prior, posterior samples for α can be drawn from

α|· ∼ Gamma(N + aα − 1, bα − log(wN))

By repeating steps 1 through 6 iteratively, samples for each of the parameters will

be collected.

B Prediction of New Observations

Frequently of interest in modeling claims data is to be able to predict from the model

given a certain set of predictor variables, z∗. If B samples are drawn from the posterior

distribution of the parameters then the predictive distribution for a new observation

can be found using the following steps for b = 1, ..., B, meaning variables superscripted

by (b) are the b-th sample.

1. Draw a value, l∗, between 1 and N with probability Pr(l∗ = j) = w
(b)
j

2. Set β∗ equal to βl∗ and set σ∗2 equal to σ2
l∗

3. Draw a new value y∗(b) from N(·|z∗′β∗, σ∗2)

The result is a sample from the posterior predictive distribution given covariates z∗.
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