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Abstract

This article proposes using credibility theory in the context of stochastic claims reserving.

We consider the situation where an insurer has access to the claims experience of its peer com-

petitors and has the potential to improve prediction of outstanding liabilities by incorporating

information from other insurers. Based on the framework of Bayesian linear models, we show

that the development factor in the classical chain-ladder setting has a credibility expression, i.e.

a weighted average of the prior mean and the best estimate from the data. In the empirical

analysis, we examine loss triangles for the line of commercial auto insurance from a portfolio of

insurers in the US. We employ hierarchical model for the specification of prior and show that

prediction could be improved through borrowing strength among insurers based on a hold-out

sample validation.

Keywords: Bayesian Modeling, Chain-ladder method, Hierarchical model
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1 Introduction

General insurance (also known as property-casualty insurance in the U.S. and non-life insurance

in other countries) protects a person or business against the losses to its physical property or legal

liability through injury property damage. General insurance is a stable cornerstone of and makes

significant contributions to any developed economy. In 2011, as the largest insurance market in

the world the U.S. underwrote over $0.66 trillion U.S. dollars of premium in property and casualty

insurance, which account for about 4.45% of the nation’s GDP (International Insurance Fact Book

2013 ). Because of its critical role in the economy, the general insurance industry is usually highly

regulated to monitor and ensure its financial health. For example, each insurer is required to provide

sufficient technical provisions, also known as loss reserves, to support its potential outstanding

liabilities.

Loss reserves represent the best estimate of an insurer’s outstanding loss payments. In general

insurance potential reporting lags, the settlement process, and potentially reopened claims can all

lengthen the time to close a claim. For the purposes of valuation and financial reporting, the insurer

predicts the ultimate payment amount for all the claims arising from past exposures. This includes

estimates of both incurred but not reported and reported but not settled claims. The loss reserve

is then built up based on the best estimate and updated at each valuation.

There is an extensive literature on the prediction of outstanding losses and quantification of

associated predictive uncertainty. See, for example, Taylor (2000) and Wüthrich and Merz (2008)

for comprehensive reviews. One approach worth mentioning is the chain-ladder method which is

the current industry benchmark and is also the building block of the hierarchical model employed

in this study. Think of a run-off triangle of cumulative payments, where aggregated paid losses are

arranged in a triangular fashion to reflect the occurrence and development over years. The chain-

ladder algorithm uses year-to-year development factors to project cumulative payments for each

accident year. This simple algorithm is further justified by a variety of statistical models which also

provide the foundation to quantify reserving variability. Several commonly used variations include

the Mack chain ladder (Mack (1993, 1999)), the Munich chain ladder (Quarg and Mack (2008)),

and bootstrap chain ladder (England and Verrall (2002)). Additionally, the chain-ladder model can

be easily implemented in the statistical package R (see Sturtz et al. (2005)).
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Incorporating the experience of loss payment from peers could add value to the prediction of an

insurer’s own liabilities. First, an insurer’s own claim experience might not be reliable, especially for

small insurers. In this case, the insurer might want to give less credibility to its own experience but

more to the industry-level information. Second, an insurer could borrow strength in the prediction

of its own outstanding claims by combining experiences from other companies that share similar

claim payment patterns, often in the same line of business. Third, the claim experience of all

insurers are influenced by certain common factors whether macroeconomic or due to a change in

regulation, pooling experience from multiple insurers can better capture and measure such factors.

In this work, we develop a formal structure to incorporate claim information from peer insurers

with an insurer’s own information for reserving purposes. We focus on the chain-ladder approach

and using the theory of Bayesian linear models, we show that the development factor in the claim-

ladder method has a credibility expression, i.e. a weighted average of prior knowledge and an

estimate from data. Furthermore, through hierarchical models we explore the impact of prior

specification. The Bayesian approach is a natural choice to blend collateral information with an

insurer’s own claim experience. Additionally, Bayesian models naturally incorporate parameter

uncertainty in the prediction. Bayesian methods have a long history in the loss reserving literature,

with the earliest efforts traced back to 1990s (see, for example, Jewell (1989, 1990) and Verrall

(1990)). Partly because of the development of the Markov chain Monte Carlo (MCMC) techniques,

the loss reserving literature has observed an increasing number of applications from the Bayesian

perspective. Some recent examples include Antonio and Beirlant (2008), de Alba and Nieto-Barajas

(2008), Peters et al. (2009), Meyers (2009), Merz and Wüthrich (2010), Shi et al. (2012), and Zhang

and Dukic (2012) among others.

Apart from the above literature, two recent studies incorporate information from multiple in-

surers for reserving. Zhang et al. (2012) employed a hierarchical growth curve to predict insurers’

outstanding liabilities for a single business line. Extending this idea, Shi (2013) proposed a Bayesian

copula regression model for determining reserves for dependent lines of business. Different from

these studies, we focus on the classical chain-ladder model and derive a credibility estimate. Note

that although credibility is widely used in ratemaking, to the best of our knowledge, it has not

been studied in reserving. Furthermore, both Zhang et al. (2012) and Shi (2013) focused on pre-

diction for the portfolio of insurers. In contrast, we emphasize the value of external information
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for individual insurers.

The rest of the article is structured as follows: Section 2 formulates the Bayesian linear model

and presents the credibility results in reserving prediction. Section 3 describes the loss triangle

data. Section 4 introduces the hierarchical model and proposes alternative choices for the prior

specification. Model inferences are discussed as well. Section 5 demonstrates the prediction using

the Bayesian model and compares model performance using out-of-sample validation. Section 6

concludes the paper.

2 Model

Credibility is a technique for incorporating relevant outside data and is widely used in ratemaking.

Studies on credibility begin with Mowbray (1914) and Whitney (1918). The theoretical foundation

for credibility ratemaking is due to Bühlmann (1967) where traditional credibility formulas are

derived in a distribution-free setup using a least-squares criterion. The approach was subsequently

extended and popularized by a series of studies (see Bühlmann and Gisler (2005) for a comprehensive

review). Despite of its long history in ratemaking, credibility is rarely used in reserving even though

the goal is prediction as well.

We investigate credibility in loss reserving based on the framework of Bayesian linear models

and show the credibility results for the chain-ladder method. Bayesian credibility was introduced by

Bailey (1950) and further extended by Mayerson (1964), Miller and Hickman (Miller and Hickman),

and Luo et al. (2004) among others. Our study is unique because instead of focusing on a single

insurer we show the credibility results for a group of insurers. We argue that an insurer could

borrow predictive strength from the claims experience of peer insurers.

Consider N run-off triangles, each from an individual insurer. Assume all triangles are of the

same dimension with I accident years and J(= I) development years. Let Cn
i,j denote the cumulative

paid loss in the ith (i = 1, · · · , I) accident year and the jth (j = 0, · · · , I−1) development lag of the

nth (n = 1, · · · , N) insurer. Define C
(n)
j =

(
C

(n)
1,j , · · · , C

(n)
I,j

)′
for j = 0, · · · , I−1 and n = 1, · · · , N .

Denote C
(n)
U,j =

(
C

(n)
1,j , · · · , C

(n)
I−j,j

)′
and C

(n)
L,j =

(
C

(n)
I−j+1,j , · · · , C

(n)
I,j

)′
as the vector of cumulative

payment in the upper triangle (realized loss) and lower triangle (outstanding payment), respectively.
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For the purposes of brief presentation, we further define

Yj =


C

(1)
U,j

...

C
(N)
U,j

 , Xj−1 =


C

(1)
U,j−1

. . .

C
(N)
U,j−1

 (1)

for j = 1, · · · , I − 1. To determine reserve, we follow the spirit of classic chain-ladder method and

focus on the year-to-year development factors in the triangle. Specifically we examine the following

linear model:

E(Yj |βj) = Xj−1βj (2)

Var(Yj |βj) = Rj (3)

where βj = (β
(1)
j , · · · ,β(N)

j )′ represents the vector of development factors from lag j − 1 to j, and

Rj denote the (conditional) covariance matrix for the jth development year.

We adopt a Bayesian approach for predicting outstanding payments and quantifying reserve

variability. Using a conjugate multivariate normal prior βj ∼ N(µj ,Ωj), we have

 βj

Yj

 ∼ N


 µj

Xj−1µj

 ,

 Ωj ΩjX
′
j−1

Xj−1Ωj Rj +Xj−1ΩjX
′
j−1


 (4)

It is straight forward to derive the posterior distribution of βj with

E(βj |Yj) = µj +ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1(Yj −Xj−1µj) (5)

Var(βj |Yj) = Ωj −ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Xj−1Ωj (6)

Credibility Result 1: The posterior mean of development factor is a matrix-weighted average

of the prior mean and the generalized least squares estimator, i.e. E(βj |Yj) = (I−ζβ)µj+ζββ
GLS
j ,

where ζβ = (Ω−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Xj−1 and βGLS

j = (X
′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Yj .
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Proof.

ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Yj

={ΩjX
′
j−1R

−1
j −ΩjX

′
j−1R

−1
j Xj−1(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j }Yj

=Ωj{I−X
′
j−1R

−1
j Xj−1(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1}X′
j−1R

−1
j Yj

=Ωj{Ω−1
j }(Ω

−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Yj

=ζββ
GLS
j

µj −ΩjX
′
j−1(Rj +Xj−1ΩjX

′
j−1)

−1Xj−1µj

=µj − (Ω−1
j +X

′
j−1R

−1
j Xj−1)

−1X
′
j−1R

−1
j Xj−1µj

=(I− ζβ)µj

It is straightforward to see that when Ωj → ∞ or 0, ζβ → I or 0, respectively. That is, if one

knows the true value of development factors, then zero credibility is given to the data. Otherwise,

if one has no prior information on the development factors, full credibility is given to the data.

Credibility Result 2: The predictive mean of cumulative payment in each lower triangle

is a weighted average of the prior mean and the best prediction, i.e. E(C
(n)
L,j−1βj |Yj) = (1 −

ζ
(n)
β )C

(n)
L,j−1µ

(n)
j + ζ

(n)
β C

(n)
L,j−1β

(n)GLS
j , iff

Rj =


R

(1)
j

. . .

R
(N)
j

 and Ωj =


(
ω
(1)
j

)2

. . . (
ω
(N)
j

)2

 (7)

where ζ
(n)
β =

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1(

ω
(n)
j

)−2
+C

(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1

, β
(n)GLS
j =

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j

C
(n)′
U,j−1

(
R

(n)
j

)−1
C

(n)
U,j−1

, and µ
(n)
j is the nth

element in µj . Furthermore, if R
(n)
j = diag

((
σ
(n)
j C

(n)
1,j−1

)2
, · · · ,

(
σ
(n)
j C

(n)
I−j,j−1

)2
)
, the predictive

mean of the outstanding payment is a weighted average of the prior mean and the chain-ladder

prediction.

Proof. The first part of the result follows from conditional assumption among triangles. The

second part of the result is due to β
(n)GLS
j =

∑I−j
i=1 C

(n)
i,j /

∑I−j
i=1 C

(n)
i,j−1 (n = 1, · · · , N), which is the

chain-ladder development factor.
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Note that the above results could be derived for each individual triangle. We emphasize that by

pooling triangles from multiple insurers we allow an insurer to blend its own claim experience with

its peers. The information sharing could be achieved by allowing triangles from different insurers to

be correlated with each other. Explicitly, that correlation could be introduced through the sampling

distribution. In this study, we focus on an implicit strategy, a hierarchical prior specification (see

Section 4). The hierarchical model is more natural and intuitive for this application, allowing an

insurer to adjust its priors based on the information borrowed from other insurers.

3 Data

In the empirical analysis, we consider run-off triangles of commercial automobile insurance from

a group of property-casualty insurers in the US. The data are from Schedule P of the National

Association of Insurance Commissioners (NAIC) database. The triangles are available in terms

of both incurred and paid losses. Our analysis uses the 1997 paid losses. Each triangle contains

payments for the claims in ten accident years from 1988 to 1997, and for each accident year up

to ten development lags. Table 1 illustrates organization of the data. For example, the first row

contains payments for claims which occurred in 1988. Because of the reporting and settlement lags,

we observe payments from 1988 through the valuation year, 1997. In contrast, for accident year

1997, we only have one year of payments by the valuation year.

Table 1: Run-off triangle from Schedule P of NAIC

Accident Year 0 1 2 3 4 5 6 7 8 9

1988 × × × × × × × × × ×
1989 × × × × × × × × × ← 1998
1990 × × × × × × × × ← 1999
1991 × × × × × × × ← 2000
1992 × × × × × × ← 2001
1993 × × × × × ← 2002
1994 × × × × ← 2003
1995 × × × ← 2004
1996 × × ← 2005
1997 × ← 2006

The goal of reserving practice is to identify the payment pattern based on realized paid losses

and to predict outstanding future payments. Using the example in Table 1, and assuming that
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all claims will be settled in ten years, we predict the unpaid losses represented by the cells in

the highlighted lower triangle. To validate the model, we use a hold-out sample to evaluate the

prediction. In our analysis, we will use the data from 1997 to develop the model and use realizations

of future payments in lower triangles to examine the predictive performance of alternative models.

The validation data are extracted from the Schedule P in the NAIC database of subsequent years

1998-2006. Specifically, the paid losses of accident year 1989 are from the Schedule P of year 1998,

the paid losses of accident year 1990 are from the Schedule P of year 1999, and so on. This process

is also demonstrated in Table 1 where the last column indicates the year from which the future

payments in lower triangles are gathered.

Schedule P contains firm level run-off triangles of aggregated claims for major business lines

of U.S. property-casualty insurers. Examples include personal auto liability, commercial auto lia-

bility, worker’s compensation, general liability, and medical malpractice. The settlement periods

for liability insurance could be lengthy due to late reporting, protracted negotiations, or judicial

proceedings. However, the triangle data of Schedule P only contains payments for the most recent

ten years. Because of this drawback, we focus on commercial auto liability where, compared with

other casualty lines, the loss payments have relatively shorter tails and take fewer years to close.

In our analysis, we examine fifteen insurers with large commercial auto liability books. We

expect that insurers could borrow more from peers of similar size. In selecting the group of insurers,

we also make sure that there is no major merger and acquisition in this particular line of business

over the study period. Specifically, the Schedule P of years 1998-2006 contains paid losses in the

upper triangles that are already extracted from the Schedule P of year 1997 as well. We use

observations in overlapping years to cross-validate the data quality of the selected insurers. To

visualize the data, Figure 1 displays the development of cumulative payments for each insurer by

accident year. Each curve connects the paid losses over time corresponding to a single accident

year. As anticipated, the curve flattens in later development years. In particular, there is no

substantial increase in the payment from the eighth to the ninth development lag for accident year

1988, which supports our assumption that it takes about ten years to close all the claims. Notice

that the volume of business written varies over years and there is substantive heterogeneity across

insurers.
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Figure 1: Multiple time series plot of cumulative paid loss

4 Bayesian Inference

In the empirical analysis, we introduce correlation between insurers and thus enable information

borrowing simply from the hierarchical specification. Specifically, we start with the model

C
(n)
ij ∼ N

(
C

(n)
ij−1β

(n)
j ,

(
σ
(n)
j C

(n)
ij−1

)2
)

β
(n)
j ∼ N(µj , θ

2)

Here, we assume that the development factors in the jth year, β
(n)
j , have the same prior distribution

with mean µj . an insurer is expected to incorporate experience of payment development from other

insurers into its own experience. The parameter θ2 is fixed and known. It determines the degrees

of shrinkage among multiple insurers in that smaller values will increase the shrinkage and larger

values will weaken it. We employ an empirical Bayes estimates for σ
(n)
j from the classical chain-

ladder model. This allows for fair comparison to the chain-ladder prediction and demonstrates the

value added by credibility.
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There are different ways to specify the prior distribution for hyperparameter µj . We discuss two

alternatives that are particularly useful in reserving applications. The first and a natural choice is

a conjugate prior. We use

µj ∼ N(a, b2)

where b2 controls the precision of prior knowledge that one has on µj and also create shrinkage in

the development factors over years. We use a = 1 and impose a diffuse prior b = +∞ assuming

that an insurer has no prior knowledge on the development factor and the only way to gather

information is to learn through its peers. The diffuse prior also guarantees the heterogeneity in

development factors over time, which is desirable because we do not expect shrinkage over time

though we anticipate shrinkage across insurers.

Alternatively, we know that as payments develop over time the development factors will tend

to one. We can think of it as a change point where at some development time k, the claims are

settled and all later factors are one. Specifically, the model is written as follows:

µj ∼

 N(a, b2) if j < k

N(1, 0.00012) if j ≥ k

k ∼ DU(1, 10)

Here we assume that there are two states for hyperparameter µj . The posterior of parameter k

determines the time period that it takes to close all claims such that the development factor is

essentially one. Assuming no prior knowledge, we use a discrete uniform prior. Note that it is

possible that it takes longer to close all claims than the window period of the triangle. In our

application, claims might continue to develop after ten years. In this case, k will be 10. In practice,

the domain knowledge of the reserving actuaries will determine the priors. Another choice that

serves a similar purpose is to think of the prior of µj as a mixture of a normal distribution and

1, then the value of the weight for the normal distribution is the posterior probability that the

development factor is significantly different from 1 (πj):
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µj ∼

 N(a, b2) with probability πj

N(1, 0.00012) with probability 1− πj

πj ∼ Unif(0, 1)

We estimate the hierarchical model using 50,000 MCMC iterations with the first 40,000 itera-

tions discarded as a burn-in sample. Though not reported here, we generate multiple chains from

different initial values, and the convergence for each parameter is confirmed with the Gelman-Rubin

statistic. The posterior of k appears to be 8, indicating that the hyperparameter µj will transit to

the absorbing state (=1) in the eighth development year.

To compare between the conjugate prior and the change point prior, Figure 2 presents the

posterior distribution of µj . The left and right panel represents the posterior when using the

conjugate and change point prior, respectively. Each box-plot corresponds to the prior mean of the

development factor in each accident year. As anticipated, we observe relative larger development

factors in the early stage and the the rate at which claims develop decreases over time. The

two panels display similar patterns in the development factors. The subtle difference is that the

development factors in the last two development years are equal to one under the change point

process, however, they follow normal distribution under the conjugate prior. It is not surprising to

see the little difference because when essentially all the claims are closed in the last two development

years as suggested by the change point process, the normal distribution could not pick up much

variability in the data.

The Bayesian linear model in Section 2 is based on the normality assumption. We employ resid-

ual analysis to validate this assumption. Note that residuals are not well defined in a Bayesian con-

text. We follow the classic definition and calculate residuals as e
(n)
ij =

(
C

(n)
ij − β̂

(n)
j C

(n)
ij−1

)
/
(
σ̂
(n)
j C

(n)
ij−1

)
,

where β̂
(n)
ij is the the posterior mode and σ̂

(n)
j is the empirical Bayes estimates. We present the

normal qq plot in Figure 3. The agreement with the 45 degree line is consistent with the normality

assumption. Also reported in Figure 3 is the plot of residual versus fitted value, where no particular

pattern is detected. Note that because there is little difference between the conjugate hyperprior

and the change point hyperprior, we only report the results from one of the two models.
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By pooling multiple triangles, an insurer could gain predictive power by borrowing strength

from other insurers. This is reflected by the shrinkage effect on the development factors, which is

illustrated in Figure 4. Each panel reports the development factors in a particular year. Recall that

parameter θ2 controls the degrees of shrinkage. We estimate the model at θ = 1, 0.1, and 0.01.

Within a panel, each curve connects the development factors estimated at various shrinkage for a

single insurer. For comparison, we also report the development factor in the chain ladder model.

As anticipated we see that a smaller θ shrinks the development factors of all insurers toward the

group average. We also observe a larger shrinkage effect on the development factors in early years

but smaller effect for later years. This is explained by the weak heterogeneity across insurers in

later development years and the small variability in their posterior mean as shown in Figure 2. In

the extreme case, the change point process even suggests that the expected development factors

in the most recent two years are equal to one. There is no shrinkage effect in the chain ladder

approach. As indicated in Section 2, the Bayesian linear model will reproduce the chain-ladder

prediction when diffuse prior is used for inference. Finally, we stress that the degrees of shrinkage,

i.e. whether to rely on an insurer’s own claim experience or to adjust the prediction toward the

industry average, requires the expert knowledge of reserving actuaries.
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Figure 4: Shrinkage effects on development factors

5 Prediction

In this study we use chain-ladder method as the benchmark from which we employ a hierarchi-

cal model to introduce credibility. The inference has focused on the development factor in the

chain-ladder framework. Therefore, the prediction follows in a straightforward way. The reserve

(outstanding payments) for insurer n, R(n), is estimated by

R̂(n) =

I∑
i=1

C
(n)
iI−i

(
β̂
(n)
I−i · · · β̂

(n)
I−1 − 1

)

where β̂
(n)
j (j = 0, · · · , I − 1) are the best estimates i.e. the posterior mode from the hierarchical

model. Wisely, reserving actuaries are more interested in a credible predictive range than a single

point prediction. A commonly used measure of reserve variability is the mean squared predic-

tion error that combines both uncertainty in the stochastic model and the unknown parameters.
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Straightforward calculation shows similar decoupling results in a Bayesian context:

MSEPR(n) = E
[
(R(n) − R̂(n))2

]
= E

[
Var(R(n)|Θ)

]
+Var

[
E(R(n)|Θ)

]

The total variance (TV ) is decomposed into average process variance (PV ) and estimation error

(EE) as in the classical analysis.

Tables 2 and 3 summarize the prediction results using the conjugate hyperprior and the change

point hyperprior respectively. We report in each table the best estimate of firm-level reserves and

the associated variability with the decoupling components under different degrees of shrinkage. The

panel with θ = +∞ is equivalent to the chain ladder prediction. As θ decreases, the shrinkage effect

strengthens. The amount of shrinkage has a pretty significant impact on the reserve, especially when

θ = 0.01. Note that the hierarchical specification drives the development factor not necessarily the

reserve toward the group average, because the development factor and reserve could be negatively

correlated. For example, a small firm might have a larger development factor, thus the shrinkage

prediction would lower the reserve prediction. In addition, we also observe the effect of shrinkage

on the reserving variability, especially for the estimation uncertainty. This is expected because the

uncertainty in hyperpriors will be added to the parameter estimates. The average process variance

is small because the conditional process variance is calculated following the chain-ladder approach

and the estimation uncertainty is subdued by the averaging process. Consistent with results in

Section 4, the predictions under the conjugate hyperprior and the change point hyperprior are

quite similar.

In the above analysis, we have used a diffuse prior (a = 1, b = +∞) for the hyperparameter

µj , assuming that no prior knowledge is available at the point of valuation. The Bayesian ap-

proach allows expert opinions into the inference process. This could also be viewed as a downside

because management could manipulate loss reserves through prior beliefs to manage earnings or

hide solvency issues, though this is somewhat true under standard models depending on how the

development factors are chosen or which method is used. We perform a prior sensitivity analysis

of the reserve predictions to determine the extent of that control. Specifically, we consider the

six combinations of a = 0.5, 1, 2 and b = 0.1, 1. The reserve estimates, total variance, process

variance and estimation error are calculated under each specification. Along with the base case,
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Table 2: Reserve prediction using conjugate prior

Company Reserve
√
TV

√
PV

√
EE Reserve

√
TV

√
PV

√
EE

θ = +∞ θ = 1
1 498,645 28,222 24,953 13,184 498,808 28,244 24,956 13,226
2 410,216 18,174 14,975 10,298 410,150 18,273 14,975 10,472
3 490,000 90,432 80,935 40,341 490,151 90,694 80,958 40,880
4 463,987 30,850 25,902 16,758 463,906 31,072 25,901 17,164
5 157,824 46,527 41,740 20,555 156,413 45,899 41,743 19,085
6 67,497 6,874 4,633 5,078 67,543 6,808 4,634 4,988
7 93,136 10,601 9,447 4,810 93,046 10,538 9,446 4,672
8 145,421 11,175 8,435 7,331 145,446 11,216 8,436 7,391
9 99,618 9,445 7,376 5,899 99,765 9,465 7,380 5,927
10 83,508 7,952 5,818 5,420 83,536 7,979 5,819 5,459
11 84,934 9,971 7,916 6,062 85,222 9,957 7,924 6,029
12 88,281 7,525 5,807 4,785 88,347 7,534 5,809 4,798
13 239,553 21,880 17,005 13,768 239,992 21,913 17,016 13,807
14 82,357 12,395 10,691 6,271 82,179 12,364 10,681 6,228
15 42,301 6,207 5,248 3,316 42,212 6,208 5,243 3,323

θ = 0.1 θ = 0.01
1 497,245 28,031 24,938 12,800 450,286 25,672 23,996 9,125
2 413,177 18,227 15,001 10,354 455,377 18,261 15,500 9,656
3 491,968 88,191 81,058 34,747 444,800 79,260 77,503 16,594
4 458,874 30,734 25,808 16,690 379,806 26,294 24,102 10,509
5 146,799 43,454 42,125 10,665 153,487 44,558 44,190 5,717
6 68,806 6,796 4,648 4,958 95,992 6,648 5,024 4,353
7 88,571 10,233 9,386 4,075 80,285 9,472 9,173 2,362
8 146,181 11,180 8,449 7,322 145,011 9,639 8,501 4,544
9 101,446 9,428 7,405 5,835 95,709 7,968 7,224 3,362
10 82,514 7,897 5,789 5,372 52,722 5,954 4,923 3,348
11 87,309 9,791 7,972 5,684 92,342 8,722 8,185 3,013
12 87,964 7,435 5,803 4,648 76,680 6,294 5,548 2,973
13 232,388 21,211 16,845 12,889 179,319 16,735 15,582 6,103
14 75,427 11,404 10,161 5,177 45,127 8,357 7,977 2,491
15 39,045 5,946 5,103 3,051 26,129 4,646 4,474 1,251
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Table 3: Reserve prediction using change point prior

Company Reserve
√
TV

√
PV

√
EE Reserve

√
TV

√
PV

√
EE

θ = +∞ θ = 1
1 498,870 28,317 24,955 13,382 498,910 28,393 24,959 13,535
2 410,435 18,217 14,978 10,369 410,483 18,189 14,979 10,319
3 490,445 91,108 80,969 41,768 489,781 90,693 80,918 40,959
4 464,048 31,019 25,903 17,065 463,516 31,043 25,890 17,127
5 157,670 46,508 41,728 20,537 156,102 46,060 41,725 19,507
6 67,681 6,863 4,635 5,061 67,663 6,818 4,635 5,000
7 93,040 10,576 9,441 4,766 92,919 10,526 9,437 4,662
8 145,140 11,165 8,430 7,320 145,104 11,212 8,430 7,393
9 99,813 9,437 7,381 5,880 99,940 9,427 7,384 5,859
10 83,543 8,011 5,820 5,506 83,692 8,021 5,823 5,517
11 84,922 9,924 7,916 5,986 84,863 9,882 7,914 5,918
12 88,409 7,511 5,810 4,760 88,209 7,551 5,806 4,827
13 239,901 21,956 17,012 13,880 240,141 22,015 17,019 13,964
14 82,378 12,396 10,696 6,266 82,236 12,350 10,685 6,193
15 42,236 6,216 5,245 3,336 42,196 6,235 5,242 3,376

θ = 0.1 θ = 0.01
1 497,308 28,205 24,936 13,180 450,274 25,654 23,996 9,074
2 413,434 18,341 15,003 10,549 454,381 18,193 15,491 9,540
3 491,147 88,324 80,998 35,220 445,029 79,329 77,528 16,808
4 458,812 30,773 25,806 16,763 379,380 26,257 24,095 10,433
5 147,018 43,513 42,132 10,873 152,649 44,506 44,139 5,700
6 68,799 6,870 4,648 5,059 96,024 6,605 5,024 4,288
7 88,497 10,203 9,385 4,003 80,238 9,468 9,171 2,353
8 146,199 11,119 8,449 7,228 144,272 9,592 8,488 4,468
9 101,371 9,434 7,403 5,848 95,695 7,968 7,224 3,362
10 82,402 7,942 5,787 5,440 51,792 5,837 4,906 3,162
11 87,259 9,824 7,972 5,741 92,359 8,718 8,186 2,998
12 87,938 7,459 5,803 4,687 76,402 6,285 5,543 2,963
13 232,652 21,360 16,853 13,124 179,148 16,699 15,578 6,016
14 75,096 11,400 10,143 5,204 45,057 8,355 7,975 2,491
15 39,236 5,951 5,113 3,046 25,911 4,638 4,467 1,248
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we present the reserve estimates and the predictive uncertainty in Figure 5. Each line in the figure

represents an individual insurer. The predictions and associated variability are relatively robust to

the prior specification, suggesting that data are informative enough for model inference.
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Figure 5: Robust analysis of reserve prediction

We employ out-of-sample validation to examine the value added by the information pooling.

Recall that we have access to the Schedule P in years 1998-2006, and thus can calculate the

actual amount of future payments (paid losses in the lower triangle) for each insurer, denoted

by Q(n). Based on the predictive distribution of reserve R(n), we compute the two-sided p-value

min
{
Pr(R(n) < Q(n)), Pr(R(n) > Q(n))

}
. A smaller p-value indicates a more extremal outcome, i.e.

the realized outcome is further away from the center of prediction. Because both under and over

reserving could be detrimental to the insurer, a small p-value implies poor predictive performance.
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The p-value is calculated using both conjugate prior and change point prior and using different

degrees of shrinkage for each prior. Results are presented in Table 4 with the largest p-value

highlighted. Recall that the diffuse prior θ = +∞ reproduce the chain ladder predictions. The

small p-values for this scenario suggest that using some degrees of shrinkage to borrow information

from peer insurers, an insurer is as least as good as the chain ladder method and as the amount of

shrinkage increases, the model improves.

Table 4: p-values from out-of-sample validation

Conjugate Prior Change Point Prior
Company θ = +∞ θ = 1 θ = 0.1 θ = 0.01 θ = +∞ θ = 1 θ = 0.1 θ = 0.01

1 0.093 0.093 0.100 0.333 0.093 0.093 0.101 0.332
2 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000
3 0.025 0.025 0.021 0.048 0.025 0.025 0.022 0.048
4 0.045 0.046 0.062 0.113 0.046 0.048 0.063 0.109
5 0.250 0.237 0.164 0.211 0.248 0.236 0.166 0.205
6 0.015 0.015 0.023 0.020 0.016 0.015 0.024 0.020
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.094 0.094 0.083 0.069 0.098 0.099 0.081 0.078
9 0.151 0.148 0.109 0.231 0.146 0.142 0.111 0.232
10 0.155 0.155 0.185 0.000 0.156 0.152 0.190 0.000
11 0.234 0.242 0.310 0.492 0.232 0.230 0.308 0.492
12 0.003 0.003 0.004 0.082 0.003 0.004 0.004 0.088
13 0.007 0.006 0.013 0.362 0.006 0.006 0.013 0.358
14 0.044 0.045 0.106 0.027 0.044 0.044 0.111 0.027
15 0.291 0.296 0.489 0.003 0.295 0.297 0.476 0.003

Selected 2 2 4 7 2 2 4 7

6 Conclusion

In this paper, we investigated credibility in reserving. We started with the classical chain-ladder

method and, based on Bayesian linear models, we showed credibility results for both development

factors and reserve estimates, i.e. a weighted average of prior knowledge and best estimates from

the data. Further, we employed a hierarchical model for the prior specification such that an

insurer could blend its own experience with claim experience from peer insurers. The hierarchical

specification also leads to a shrinkage effect on the information across insurers. We emphasized

that the degree of shrinkage used in the prediction is a judgement call of the reserving actuaries,

allowing for more flexibility in the model.
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In the empirical analysis, we examined a portfolio of fifteen large US property-casualty insur-

ers’ commercial auto insurance lines. We explored alternative approaches for prior specification,

including conjugate and change point priors. The former is a natural choice for hierarchical model,

and the latter is particularly useful if one is more interested in the payment pattern in the tails. We

illustrated the advantage of the Bayesian approach to quantify reserve variability. Without loss of

interpretability, the total variance can still be decomposed into the process variance and estimation

error. Through out-of-sample validation, we showed that prediction for individual insurers can be

improved by borrowing strength from peer insurers.
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