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Abstract

We seek to understand the factors that drive mortality in the contiguous United States using data
that is indexed by county and year and grouped into 18 different age bins. We propose a model that
adds two important contributions to existing mortality studies. First, we treat age as a random effect.
This is an improvement over previous models because it allows the model in one age group to borrow
information from other age groups. Second, we utilize Gaussian Processes to create nonlinear covariate
effects for predictors such as unemployment rate, race, and education level. This allows for a more flexible
relationship to be modeled between mortality and these predictors. Understanding that the United
States is expansive and diverse, we allow for many of these effects to vary by location. The flexibility
in how predictors relate to mortality has not been used in previous mortality studies and will result in
a more accurate model and a more complete understanding of the factors that drive mortality. Both
the multivariate nature of the model as well as the spatially-varying non-linear predictors will advance
the study of mortality and will allow us to better examine the relationships between the predictors and
mortality.
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1 Introduction

Life insurers, among others, are interested in modeling and predicting mortality experience for many
different groups. There are many ways that the life experiences of individuals vary across a population.
Some of these ways are easily quantifiable such as age, sex, and income. Other things are harder to measure
such as happiness, health, and social connection. Even though it is not possible to measure all of the ways
that these lives differ, it is nonetheless expected that life experiences will tend to be more similar in areas
that are geographically closer to one another.

Before the 1990s mortality models were largely deterministic. Dickson et al. (2020) give a good overview of
the development of these methods. Now stochastic modeling is the standard practice for mortality modeling
with Lee and Carter (1992) proposing one of the earliest stochastic models for mortality. Despite their
model’s shortcomings, such as lack of smoothness across ages and a lack of spatiotemporal interactions, it is
an improvement over purely deterministic methods and has good interpretability.

Many variations on the Lee-Carter model have been proposed; the Cairns-Blake-Dowd model (Cairns
et al., 2006) has been widely used for modeling morality improvements. Cairns et al. (2009) provide an
overview of the differences and a quantitative comparison between the Carins-Blake-Dowd model and the
Lee-Carter model. Melnikov and Romaniuk (2006) and Booth and Tickle (2008) discuss these different
models as well as older models and how they have been used for mortality forecasting.
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One thing that is missing from all of these models is spatial correlation. It seems quite reasonable that
mortality would be more similar in areas that are geographically closer as there are similarities in areas
that are close together that are not easily measured. Thus, including spatial effects into our modeling could
improve our understanding of mortality. Many researchers have incorporated spatial and spatiotemporal
effects into their mortality modeling. Clayton and Kaldor (1987) and Manton et al. (1989) were some of
the first to use Empirical Bayes to account for spatial correlation. A review of Empirical Bayes and fully
Bayesian approaches for modeling spatial variation in mortality rates is given by Bernardinelli et al. (1995).
Waller et al. (1997) used a hierarchical Bayesian approach with spatial, temporal, and spatiotemporal effects
to model county-level lung cancer death rates in the state of Ohio. Xia and Carlin (1998) studied the same
data using a similar technique but also incorporating relevant covariates such as age and smoking prevalence.

More recently Ayele et al. (2015) used Gaussian Markov random fields to account for spatial variation
in an additive logistic regression model for child mortality rates in Ethiopia. Dwyer-Lindgren et al. (2016)
used a Bayesian approach to fit a hierarchical model which looked at the relationship between the effects
at adjacent counties and utilized county-level covariates. Alexander et al. (2017) fit a hierarchical model
to obtain subnational mortality estimates. Their model, which smoothed across space and time turned out
to be a better fit for mortality data, both simulated U.S. data and real French data divided into 19 age
groups, than simpler methods. The improvement was especially noticed in areas with low population. Boing
et al. (2020) studied geographic variation in longevity at three different geographic levels: state, county, and
census tract. They used these geographic levels as random effects in a linear regression model and found
that the census tract accounts for the largest portion of the geographical variation in longevity, making
longevity inequality in the U.S. a more local phenomenon than is often assumed. In a similar vein, Kim
and Subramanian (2016) used a model with two geographic levels (county and state) to study mortality
differences by location. They argued that including state in models was superior to using counties alone,
due to the fact that legislation, policies, and programs that can impact health are often implemented at the
state level. Li and Hyndman (2021) also considered inequalities in mortality across the United States. They
first used Lee-Carter models to produce independent state-level forecasts, then used a forecast reconciliation
approach to reconcile the state-level and national-level mortality rate forecasts. They projected mortality
rates 10 years into the future and found that mortality inequality among states is likely to persist and that
mortality improvement rates will slow down in the future. Haberman and Renshaw (2011) compares several
mortality modeling approaches with various versions of ways of treating random and fixed effects. Recent
papers by Wen et al. (2023) and Cairns et al. (2024) explore neighborhood effects for modeling mortality as
functions of socio-economic factors.

Chetty and et al. (2016), Currie and Schwandt (2016), and Ezzati and et al. (2008) model mortality at
the county level in the United States, examining the associations between various socioeconomic factors and
life expectancy as we do. They employ different methodologies to analyze mortality patterns and disparities
at the county level. On the other hand, Rashid et al. Rashid et al. (2021) develop a Bayesian hierarchical
model similar to ours, but with data from communities in England. Despite the geographical difference,
their model shares similarities with ours in its approach to understanding mortality dynamics and their
relationship with socioeconomic factors.

Recently Gibbs et al. (2020) fit a spatiotemporal model to county-level mortality data from the contiguous
United States using conditional auto-regressive priors and a county-varying linear time trend to each age
group. Here we utilize the same data and build on this model in two significant ways. First, we model all
age groups together in a multivariate spatiotemporal model. Using a multivariate approach adds significant
complexity to the model but improves the model in a similar way that adding spatial or temporal correlation
would, by allowing data at one age group to borrow strength from data at neighboring age groups (Royle and
Berliner, 1999; Gelfand, 2021). We address the added complexity by using strong Markov assumptions on
the correlations and estimate the model parameters with Integrated Nested Laplace Approximations (INLA)
(Blangiardo and Cameletti, 2015). This is one of the first significant applications modeled using multivariate
INLA models for spatiotemporal data (Vicente et al., 2020). Incorporating multivariate dependence in spatio-
temporal models is rarely done due to the computational difficulty of building models with compounding
sources of dependence, so adding this is a significant feature of the model we propose. While using random
effects in a mortality model is not new (Biffis, 2005; Loisel and Serant, 2007), this is the first attempt we are
aware of that uses all three axes of dependence as random effects.

The other novel element in our mortality model is including non-linear and spatially-varying covariate
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effects. This allows for an unprecedented degree of flexibility in how variables such as employment, education
level, and others affect mortality. Several previous works have demonstrated the relationships between various
socioeconomic variables and mortality rates. Fuchs (2004) discussed several socioeconomic variables that
have been shown to be correlated with health, and in particular the difficulties that arise as a result of
these variables often being interrelated and correlated, and sometimes difficult to measure. Mackenbach
et al. (2008) studied the mortality inequalities in 22 European countries, considering education level and
occupation class. They found that mortality and morbidity are inversely correlated with socioeconomic
status, but that the magnitude of the inequality varied considerably. Bassanini and Caroli (2015) focused on
the relationship between work and health, in terms of both number of hours worked as well as employment
status. They found that an excessive number of hours worked was detrimental to health, but also that a
reduction in hours worked due to involuntary job loss also had a deleterious impact. Boing et al. (2020)
incorporated several socioeconomic and demographic variables in their multiple geographic level model and
found that education and income level are the most significant of these variables. Villegas and Haberman
(2014) is one of many papers that examine mortality disparity by socio-economic group.

Functionally, we treat the covariates as processes on the covariate space and they are given Gaussian
process priors (Shi and Choi, 2011). By allowing these to change across space we remove the restriction that
the predictor variables affect mortality equally across the whole country. It was seen in Gibbs et al. (2020)
that this improved the model and helped to clarify the importance of the covariates.

The remainder of this article is organized as follows: Section 2 discusses the data that are analyzed in
this study, Section 3 introduces the statistical models, methods, and notation that are used to perform the
analysis, Section 4 conveys and discusses the results of this analysis, and Section 5 concludes with discussion
of model limitations and potential future work.

2 Data

In this analysis we use data from Division of Vital Statistics of the National Center for Health Statistics,
part of the Centers for Disease Control and Prevention. The data contain information about every death
that occurred in the United States from 2000 to 2017 along with demographic information including age,
sex, county of residence, county of death, race, and marital status. In this analysis we only use county of
residence (and not county of death), and restrict our attention to those counties of residence belonging to
the contiguous United States.

Using census data with interpolation, we are able to obtain the age group mortality exposure for all of
the counties during this time period. The census data are available with ages being placed in 18 buckets,
with the first being for those 0-4 years of age and the last being those individuals who are 85 years old or
older. The mortality data are divided into the same age buckets so that for each sex, county, year, and age
group, we had an exposure and the number of people who died.

As the census data are only gathered every ten years, the majority of the population data we have are
estimates. However, we have exact information on the number of deaths. This mismatch results in some
anomalies whereby there are some sex, county, year, age group combinations where the data indicate that
there are more people who died than were living in the county at the time. There are also some counties
whose populations are quite small; after dividing the counties by sex and into 18 age groups, there are some
counties whose population for a given group was zero in a given year. Counties which have an exposure of
zero or more deaths than exposures are combined with their neighbor with the largest population. After
such modification, we have 3092 counties that we consider in the model. A full list of counties which were
combined can be found in Appendix B. We use the term “county” to refer to the subdivisions throughout
all states in the United States, including Louisiana where they are actually parishes.

Figures 1a and 2a show the observed mortality for females age 55-59 and 85+, respectively, and provide
evidence of some spatial correlation. These are shown later in the paper to compare with the corresponding
fitted values. Mortality tends to be higher in the south and lower in the Midwest. Similar trends exist across
both sexes and other age groups. Figure 12 in Appendix A shows the observed countrywide mortality rate
for each age group and sex combination. In general, males have higher mortality than females. Mortality
increases with age, with the exception that the youngest group sees a mortality improvement upon reaching
age 5. Across time there appears to be mortality improvement for those individuals 45+.
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Covariate Name Meaning Measuring Frequency Source
Unemployment Unemployment rate Every County in Every Year Bureau of Labor and Statistics

Race Percent of head of households that are white Every County in 2010 Census Bureau
Home Value Typical value of a single family home Every State in Every Year Zillow
Education Percent of people 25 or older who have a bachelor’s degree or higher Every State in 2010 Census Bureau

Marital Status Percent of people 25 or older who are married but not separated Every State in 2010 Census Bureau
Household Size Average household size Every State in 2010 Census Bureau

Table 1: Covariates used in the model along with what they are measuring, frequency of measurement, and
the source of the data.

Six different covariates are used in this analysis: Unemployment, Race, Home Value, Education, Marital
Status, and Household Size. These covariates are measured at different frequencies (see Table 1). Table 1
also shows the sources of each variable. To clarify a few points, the covariate Unemployment Rate denotes
the proportion of the labor force actively seeking employment, calculated as the number of unemployed
individuals divided by the total labor force. Head of households who declare two or more races are not
counted as white head of households. The covariates of unemployment, race, and home value are divided
into 20 different groups based on quantiles. The remaining covariates of education, marital status, and
household size are divided into groups where each group consists of the states that have the same value for
the covariate. Those covariates have respectively 44, 43, and 29 unique values and so that is the number of
resulting groups. The arithmetic average of the values in each group is used as the “location” for that group
for calculating a Matérn correlation between points. The covariates appear to also have some strong spatial
dependence. In Appendix A, Figures 13 and 14 show unemployment and race values for 2010 are plotted on
the map. There is clear spatial dependence in both of these graphs. The unemployment data are complete
except for a few counties in Louisiana for 2005 and 2006. (These correspond to the parts of Louisiana that
were most heavily affected by hurricane Katrina.) Similarly we are missing home value information for a
few states in the early 2000s. See Appendix 3 for a complete list of modifications. These missing data were
dealt with by simply letting those affected observations not have an unemployment and home value effect
during those times.

3 Methods

We employ a multivariate spatiotemporal random effects model to analyze mortality data, a widely-
accepted approach for handling spatiotemporal variables. While Dynamic Linear Models are another viable
option, they primarily excel in predictive analyses. In contrast, our aim is to investigate how various
covariates influence mortality trends over time and space. The random effects model offers a more intuitive
and flexible framework for this analysis (Banerjee et al., 2003; Cressie and Wikle, 2015).

For each sex we fit distinct models, which are identical in form. Let yakt be the number of deaths
that occurred within age group a in county k during year t. In this application, a ∈ {1, 2, . . . , 18}, k ∈
{1, 2, . . . , 3092}, and t ∈ {1, 2, . . . , 18}. The number of people within age group a in county k during year t
is known, and so the binomial likelihood is appropriate for this data:

yakt|πakt ∼ Binomial(nakt, πakt) (1)

Here πakt is the annual mortality probability for someone who is in age group a in county k during year
t and nakt is the corresponding population count. We can then relate πakt to the desired effects using the
logit link function:

ln

(
πakt

1− πakt

)
= β0 +

3∑
i=1

Fi(xk) +

3∑
i=1

Gis(xkt) + ϕk + δt + ψa + γakt (2)

The parameter β0 is an overall intercept for the model. Here, xk represents the vector of covariates at the
county level, and xkt represents the vector of covariates at the county level that are also time-dependent.
Each Fi (i ∈ {1, 2, 3}) represents a function of the covariate value for the covariates of education, marital
status, and household size. A standard linear effect would be Fi(xk) = βixk. Instead we induce a nonlinear
covariate effect for by allowing Fi to be a more general function of xk, specifically a Gaussian process with
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the Matérn correlation with smoothness κ = 1.5. It is a Gaussian process on the covariate space, meaning
the finite dimensional distribution of the n-tuple (F (x1), F (x2), . . . , F (xn)) is a multivariate normal where
the covariance is based on the distances between covariate values, cov(F (x1), F (x2)) = C(|x2−x1|). This is a
flexible way to allow the covariates to have nonlinear effects on mortality. Similarly the Gis are the nonlinear
covariate effects for unemployment, race, and home value. Once again these are Gaussian Processes with
the Matérn correlation function; however, instead of simply having one effect for the entire dataset we allow
each state to have its own effect. For the purpose of these effects we define a state to be one of the 48
contiguous states in the United States (all but Alaska and Hawaii) and Washington D.C. Because we are
examining county level data, it might make more sense to use county-varying effects instead of state level
effects. However, this would not only lead to a nearly unidentifiable model, but it would be an intractable
computational challenge. We are nonetheless gaining some advantage over previous models by allowing for
some regionalization beyond an overall national effect. We impose a conditional autoregressive prior on the
different state effects so that, conditional on all the other states, the effect for a given state only depends
upon those states with which it shares a border. For identifiability, all of the individual covariate effects
have a sum to zero constraint.

The spatial effect is broken down into two components:

ϕk = uk + vk (3)

u|τu ∼ N (0, τ−1
u I) (4)

v|τv ∼ N (0, τ−1
v W−1) (5)

with precision parameters τu and τv, where u is our iid spatial effect and v is our structured spatial effect. For
identifiability, u and v have a sum to zero constraint. Our structured effect follows the type of conditional
autoregressive model proposed by Besag et al. (1991). We say that county i and county j are neighbors if
they share a border and denote this relationship as i ∼ j. We denote the number of neighbors of county i
by ni. Note that in our specification, a county is not its own neighbor. W is a county adjacency matrix
where, for i ̸= j, Wij = 1 if i ∼ j and Wij = 0 if i ≁ j. The diagonal entries are Wii = −ni. This creates a
conditional independence where conditioned on all other counties, the effect for a given county only depends
upon those counties with which it is a neighbor. This structure is more apparent if we write the effect as:

vi|vj ∼ N

 1

ni

∑
j:i∼j

vj ,
1

ni
τ−1
v

 for j ̸= i (6)

However, both formulations are equivalent.
The temporal effect is also broken down into two components:

δt = bt + ct (7)

b|τb ∼ N (0, τ−1
b I) (8)

c|τc ∼ N (0, τ−1
c R−1

c ) (9)

with precision parameters τb and τc and structure matrix Rc, where b is the iid temporal effect and c is the
structured temporal effect. For identifiability, b and c have a sum to zero constraint. The structured effect
follows a random walk of order 1 so that Rc is an 18× 18 tridiagonal matrix of the form:

Rc =



−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1


(10)

This implies that, given ct−1 and ct+1, ct is conditionally independent of ct∗ for all other t∗ not equal to
t− 1, t, or t+ 1. More flexible prior dependence could be imposed by using an autoregressive prior instead
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of a random walk, but a random walk is computationally faster in the INLA algorithm and with so much
data, the results would be quite similar.

We then have an age group effect again broken down into two components:

ψa = fa + ga (11)

f |τf ∼ N (0, τ−1
b I) (12)

g|τg ∼ N (0, τ−1
c R−1

g ) (13)

with precision parameters τf and τg and structure matrix Rg, where f is the iid age group effect and g is the
structured age group effect. For identifiability, f and g have a sum to zero constraint. The structured effect
follows a random walk of order 1 so we have that Rg is an 18× 18 tridiagonal matrix that coincidentally is
the same as Rc from Equation 10 because the number of age groups and the number of time points happen
to be the same. Then, given ga−1 and ga+1, ga is conditionally independent of ga∗ for all other a∗ not equal
to a− 1, a, or a+ 1.

Note that treating age as an axis of dependence in the same way as time and space is a novel feature of
our model. Other approaches have either built age-specific models or have added age as a covariate. What
our approach allows for is that the model at one age point borrows strength from nearby ages, the same way
the spatial random effect allows the model at a specific location to borrow strength from nearby locations.

Finally we have an iid error term:

γakt
iid∼ N (0, τ−1

γ ) (14)

where τγ is a precision parameter. All precision parameters (τ) are given identical gamma priors with mean
2000 and variance 4000000. These priors are chosen to be diffuse, although there is a significant amount of
data so the prior choice would not noticeably affect posterior results.

Rue et al. (2009) proposed a deterministic method for performing Bayesian inference using the Integrated
Nested Laplace Approximation (INLA) which is implemented in the R-INLA package (Lindgren and Rue,
2015). For a given model, the computation time in R-INLA tends to be much faster than traditional MCMC
algorithms that have been used for exploring the posterior of a model. As a result, this methodology has
become quite popular in recent years. Blangiardo and Cameletti (2015) is a nice textbook on the theory
and implementation of basic spatiotemporal inference using the package. Rue et al. (2017) and Bakka et al.
(2018) provide reviews of INLA and how it works with spatial data. We use this method for our computation
as we have a large problem and hence computational efficiency is important.

Several techniques exist to accelerate computation in large dependent models. Some methods leverage
dimension reduction, while others capitalize on sparsity in the data structure. Approaches that circumvent
dimension reduction, such as INLA, are generally considered to yield better performance (Stein, 2014). Other
methods that avoid dimension reduction, like Local Approximate Gaussian Process (LA-GP) and Nearest
Neighbor Gaussian Process (NNGP), are also expected to perform comparably (Gramacy and Apley, 2015;
Datta et al., 2016; Heaton et al., 2019). Importantly, we anticipate that the choice of model fitting procedure
should not significantly impact the inferential conclusions drawn from the analysis.

Parameters such as precisions of the stuctured and unstructured effects are estimated using the INLA
procedure. Several other modeling decisions, such as the structure of the Gaussian processes for the covariate
effects and the structure of the random effects were made by evaluating Deviance Information Criterion of
the model output for different versions of the model. The most relevant of these DIC comparisons are
shown in the Results section below. For this paper we did not try any other model structure besides the
random effects model and we did not try other estimation procedures besides INLA. Even with the sparse
modeling that INLA allows us, fitting these models was computationally intensive, especially when using the
spatially-varying non-linear covariate effects.

4 Results

4.1 Model Comparisons

The model described in Section 3 was fit to the data described in Section 2. We tried three different
versions of the model. Specifically, we used one version where we eliminated all the covariate effects (Fi’s
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Model Difference in DIC (Female) DIfference in DIC (Male)
Full Model - -

Only Countrywide 519 390
No Covariates 1,222 514

Table 2: Difference from the full model in the Deviance Information Criterion (DIC) for the three different
model versions that were fit to both the male and female data.

and Gis’s), a second version where we used only countrywide effects and no state-specific covariate effects:

ln

(
πakt

1− πakt

)
= β0 +

6∑
i=1

Fi(xk) + ϕk + δt + ψa + γakt, (15)

and a third version which was the full model described in Section 3. Equation (15) is essentially the same as
Equation (2) with all spatially varying covariates, Gis replaced by country-wide covariate effects, Fi. Table
2 shows the Deviance Information Criterion (DIC) value obtained for each model fit on both sets of data.
DIC is a model comparison metric that favors a good fit but also penalizes for the complexity of the model
(Spiegelhalter et al., 2002). Since we are interested in seeing if the more complex model with state specific
covariate effects produces a better fit than the simpler models, while accounting for model complexity, we
use DIC in our comparison of the three models. Since the DIC was lowest for the full model proposed in
Section 3, this model was chosen for the remainder of the analysis.

Figures 1b and 2b show the posterior means of the mortality rates for females aged 55-59 and 85+
respectively. The observed mortality rates for the same groups are displayed in Figures 1a and 2a. The
fitted values display similar general patterns to those seen in the observed data. One difference that is
noted, however, is that the fitted mortality rates exhibit a greater degree of spatial correlation than do the
observed ones. This is to be expected, as the fitted model allows for spatial correlations.

(a) The observed mortality rate for each county in the
contiguous United States for females aged 55-59 in 2010.
Mortality rates are multiplied by 1000 for readability.

(b) The posterior mean of the mortality rate for females
aged 55-59 in 2010. The mortality rate is multiplied by
1000 for readability.

Figure 1: Mortality rate and posterior mean for females aged 55-59 in 2010.

4.2 Random Effects

Figures 3 and 4 show the posterior mean of the spatial effect (ϕk) for the counties in the United States
for the female and male models, respectively. Recall that these effects have sum-to-zero constraints, meaning
they are centered around 0. We see that in both cases the spatial patterns of the data appear to be very
similar. We also see the same pattern manifesting itself that we saw earlier where there tends to be higher
mortality in the South and lower mortality in the upper Midwest.

One important aspect of the results to consider is how mortality is changing over time. Figure 5 shows
the posterior mean and 95% credible interval for the temporal effects (δt). From 2000 through roughly 2014,
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(a) The observed mortality rate for each county in the
contiguous United States for females aged 85+ in 2010.
Mortality rates are multiplied by 1000 for readability.

(b) The posterior mean of the mortality rate for females
aged 85+ in 2010. The mortality rate is multiplied by
1000 for readability.

Figure 2: Mortality rate and posterior mean for females aged 85+ in 2010.

the trend for both males and females is of mortality improvement over time (i.e., a decrease in δt), though
the patterns are not smooth or monotonic. Around 2014, there begins to be a small uptick in the mortality.
One potential cause for this increase could be a spike in the “deaths of despair” that are often discussed in
the mortality literature (see, for example, Scutchfield and Keck (2017)).

Figure 6 shows the posterior mean and 95% credible interval for the age group effects (ψt). Recall that
this effect is built into the model as an additional axis of dependence as opposed to building age specific
models or even adding it as a covariate. For the plots we assign the 85+ age group a value of 87.5 and use
the midpoint for all other age groups. These results are consistent with the results seen in the raw data with
respect to the age group. Namely, mortality improves upon aging out of the youngest age group, but then
consistently deteriorates as age increases. The pattern is seen to be quite similar between the males and
females; the most significant difference between the two patterns is the more pronounced “accident hump”
in the males between the ages of 15 and 29.

4.3 Covariate Effects

4.3.1 Non-Spatially Varying Effects

There were three variables used that were the same for every county across the united states. These
were education, marital status, and household size. Note that these are still flexible covariate effects, but no
advantage was seen in the model results to justify the increased complexity of making these variables spatially
varying. Figures 7 and 8 display the posterior means and 95% credible intervals for the covariate effects
corresponding to education, marital status, and household size for the female and male models, respectively.
In particular, the plots show the effect on log odds of mortality for a given county level variable, as in
Equation (2).

Although the entire credible interval contains 0 for each of these covariates, they nonetheless present
nice illustrations of the information that can be obtained when the covariates are allowed to have nonlinear
effects. As an example, consider the case of the education covariate. If this had been treated as a linear
effect, the result would like have been a slight negative slope. However, just having a negative slope does not
communicate as much information as our nonlinear effect. It can be seen from the figure that, rather than
having a monotonic linear relationship, there is a trend of slow decrease in mortality as education increases,
until the percentage of people with a Bachelor’s degree hits 25%. Then follows a quick decline in mortality
followed by a leveling off. Thus demonstrates the added flexibility and more nuanced conclusions that can
be obtained by utilizing nonlinear covariate effects.

4.3.2 Unemployment Effect

The vast majority of the states follow one of two trends. Either there is no effect for unemployment, as
is seen for Colorado, or there is a downward trend for low unemployment rates that flattens out, as is seen
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Figure 3: Posterior mean of the spatial effect (ϕk) for the model fit to the female data.

Figure 4: Posterior mean of the spatial effect (ϕk) for the model fit to the male data.
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Figure 5: Posterior means and 95% credible intervals of the temporal effects (δt). Male values are in blue
and female values are in red.

Figure 6: Posterior mean and 95% Credible interval of the age group effects (ψt). Male values are in blue
and female values are in red. The credible intervals are hardly visible because they are so tight around the
estimates.

Figure 7: Posterior mean and 95% credible interval for the covariate effects (Fi(xk)) for the model fit to the
female data. The effects displayed correspond to education (left, i = 1), marital status (center, i = 2), and
household size (right, i = 3).
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Figure 8: Posterior mean and 95% credible interval for the covariate effects (Fi(xk)) for the model fit to the
male data. The effects displayed correspond to education (left, i = 1), marital status (center, i = 2), and
household size (right, i = 3).

for North Carolina. The negative trend that flattens suggests that low unemployment rates leads to higher
mortality.

This effect is unintuitive, and in some ways defies current understanding of the relationship between
unemployment rates and mortality rates. For instance, Marmot and Wilkinson (2005) discuss how socioeco-
nomic factors, including unemployment, can impact health behaviors and lifestyle choices, potentially leading
to higher mortality rates. Access to healthcare also plays a crucial role, as highlighted by McLaughlin (2004),
who examine the demand for healthcare among the unemployed and employed during economic uncertainty.
The fact that this effect is so consistent among nearly all states could potentially motivate looking closely
at why this effect is seen. There is in fact only one state, California, where low unemployment corresponds
to lower mortality. Again, the fact that the shape is so different than the others could merit further investi-
gation. Figure 9 shows these unemployment effects for these three states for the female data; the male data
show similar patterns. Results for all 48 states and both genders are given in Supplementary Material 1.

4.3.3 Race Effect

The most consistent effect is percentage of white households. The slopes of the curves are consistently
negative and in many cases, such as Alabama, the trend is nearly linear. However, there are states such
as Illinois where we see the negative slope shift to no effect after a certain point; these differences support
having state-specific effects for race. We do see that some effects are much more sharply sloped than others.
Montana for example has a large negative slope while Alabama is nearly flat, suggesting very little effect.
The effects for the female data for selected states is given in Figure 10; the remainder of the effects for
various states can be found in Supplementary Material 2. From these it can be seen that the effects with the
sharpest slope are states in the northern United States such as South Dakota, North Dakota, and Minnesota.
States with the smallest effects are in the south, such as Mississippi, Louisiana, and Georgia. The effects of
race are very similar in the male and female models.

The strong relationship between race and mortality is consistent with previous results; many studies have
sought to explain this relationship. Wheaton et al. (2005) highlights the intricate relationship between socioe-
conomic status and health outcomes, suggesting that counties with higher percentages of white households
may benefit from better economic opportunities, leading to improved health indicators. Furthermore, the
Institute of Medicine (2003) emphasizes disparities in healthcare access and quality, potentially explaining
why counties with higher white household percentages exhibit lower mortality rates due to better access to
medical services. Borrell and Crawford’s systematic review (2009) underscores variations in health behaviors
across racial and ethnic groups, suggesting that cultural differences in lifestyle choices may contribute to the
observed mortality trends. Additionally, Morello-Frosch and Shenassa (2006) discuss the impact of environ-
mental factors on health disparities, implying that counties with higher percentages of white households may
enjoy better environmental conditions, further contributing to reduced mortality rates.
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Figure 9: Posterior mean and 95% credible interval of the unemployment effects (G1s(xkt)) for selected states
for the model fit to the female data.

Figure 10: Posterior mean and 95% credible interval of the race effects (G2s(xkt)) for selected states for the
model fit to the female data.

4.3.4 Home Value Effect

Home value seems to have a more significant affect on female mortality than male mortality. Looking
at the plots for Connecticut and Idaho for males versus females, we see that the effect of home value on
mortality for males nearly contains 0 through the whole trend while the effect for females is very clearly an
inverted U-shape. These trends are reasonably consistent among most states. The inverted U-shape is found
as the effect for nearly all states for females and in many states for males. This suggests that mortality
is highest in counties where the average home price is between 150,000 and 200,000. Mortality is lower
when average home value is under 150,000, and above 200,000 the mortality tends to either have a negative
slope, or to have a brief negative slope and flatten out, as it does for Delaware. The effects for the female
data for selected states is given in Figure 11; the remainder of the effects for various states can be found in
Supplementary Material 3.

The relationships between socioeconomic factors and health outcomes are complex, often exhibiting non-
linear patterns. For instance, Case and Deaton (2015) demonstrate the alarming trend of rising morbidity
and mortality rates among middle-aged white non-Hispanic Americans in the 21st century, underscoring the
importance of socioeconomic disparities in shaping health trajectories. In the context of housing policies,
Keene and Geronimus (2011) emphasize the need to evaluate the population health impact of public housing
demolition and displacement, highlighting the potential adverse effects of housing instability on health out-
comes. Geographical factors also play a significant role in health disparities, as evidenced by Kershaw and
Albrecht (2014), who explore the impact of metropolitan-level ethnic residential segregation on body mass
index (BMI) among US Hispanic adults. Furthermore, Galea and Vlahov (2005) provide a comprehensive
overview of urban health, emphasizing the importance of addressing social determinants of health, including
housing affordability and neighborhood characteristics. These studies collectively underscore the need for
comprehensive approaches to address socioeconomic disparities and promote population health.
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Figure 11: Posterior mean and 95% credible interval of the home value effects (G3s(xkt)) for selected states
for the model fit to the female data.

5 Conclusion

We have fit a multivariate spatiotemporal model to mortality data in the contiguous United States. This
model has built on the existing mortality modeling literature in two significant ways. First, we model all age
groups together to create a multivariate spatiotemporal model. This allows for the borrowing of information
not only across space and time but also across the different age groups of the model.

The other significant contribution is the inclusion of nonlinear and spatially-varying nonlinear covariate
effects on mortality. These nonlinear and spatially-varying covariate effects allow us to see how things such
as education, unemployment and race affect mortality and how those effects change over space. By including
a nonlinear education effect, we were able to see that while mortality generally improves as education
increases, there becomes a point where additional education seems to no longer provide additional mortality
improvement. This is broadly consistent with the findings of Boing et al. (2020), which reported a positive
correlation between life expectancy and education. Allowing the covariates effects to change over space
allowed us to observe both how the magnitude of the effect changes across states, as we saw for race and
home value, and how the shape of the effect changes across state values, as we saw for unemployment.
This flexibility allowed us to observe some otherwise undetectable trends, such as the positive relationship
between unemployment and mortality improvement in some areas, a negative relationship in some, and no
relationship in others.

There are ways that the model could be improved. By using the Kronecker product on the precision
matrices of our structured random effects we could create space-time, space-age, and age-time interactions.
This could help to make the model more realistic, as mortality is probably not changing over time and age in
the same way at all points in the country. We could also create a model in which the covariates interact with
age or time so that rather than looking at how the effect of a covariate, such as unemployment, on mortality
changes across space, we could instead explore how it changes across time or the age of the individuals.
Both sexes could also be modeled together increasing the dimension of the model and allowing for additional
borrowing of strength. Another potential improvement would be accounting for an effect known as spatial
confounding, where spatial relationships within predictors might be affecting spatial correlations. By properly
accounting for potential spatial confounding we could look more carefully at the precision parameters of the
model and draw inference from them.

Our current projects also include examining how clustering the mortality curves by county can help to
provide additional insights (Madrigal et al., 2011). Also we are examining how important it would be to
disproportionate and often odd sizes of certain county shapes. We acknowledge that this particular study
treated large, small, and oddly shaped counties the same and we hope to examine the effect of that in the
future.
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Appendix A Mortality and Covariate Plots

Figure 12: The countrywide mortality trends for each age group and sex. The plots on the left are for females
and the plots on the right are for males. The top plots are for ages 44 and under, and the bottom plots are
for ages 45+.
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Figure 13: A map of the contiguous United States showing the unemployment rates in 2010.

Figure 14: A map of the contiguous United States showing the proportion of heads of household in the
county which are white.
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Appendix B County Adjustments

Table 3 contains the FIPS codes for those counties where we had to adjust the counties for the purpose
of the analysis as well as the reason for the adjustment.

Original FIPS Adjusted FIPS Reason for Adjustment
08079 08007 Low population
08111 08067 Low population
30055 30085 Low population
30069 30027 Low population
31009 31041 Low population
31075 31033 Low population
46017 46041 Low population
46113 46102 County name and FIPS were changed in 2015
48173 48329 Low population
48259 48275 Inconsistent data
48261 48215 Low population
48269 48275 Low population
48301 48389 Low population
48311 48013 Low population
48443 48465 Low population
49009 49047 Low population
51515 51019 County boundary was adjusted in 2013
51720 51195 Counties were combined

Table 3: Table of FIPS adjustments and justifications

Unemployment data was unavailable in 2005 and 2006 in the state of Louisiana for the 7 counties with
the following FIPS codes: 22051, 22071, 22075, 22087, 22089, 22095, and 22103.

We were unable to acquire typical home value data for Montana during 2000-2001 and for North Dakota
during 2000-2004.

Appendix C List of Supplementary Materials

• S1: Results for the female and male models for the non-linear unemployment effect for all 48 states in
the model.

• S2: Results for the female and male models for the non-linear race effect for all 48 states in the model,
represented by the effect of the percentage of white head of households.

• S3: Results for the female and male models for the non-linear home value effect for all 48 states in the
model.
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