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Abstract

Using a number of modern predictive modeling methods, we seek to understand the factors that drive
mortality in the contiguous United States. The mortality data we use is indexed by county and year as
well as grouped into 18 different age bins. We propose a model that adds two important contributions to
existing mortality studies. First, instead of building mortality models separately by age or treating age as
a fixed covariate, we treat age as a random effect. This is an improvement over previous models because
it allows the model in one age group to borrow strength and information from other age groups that
are nearby. The result is a multivariate spatiotemporal model and is estimated using Integrated Nested
Laplace Approximations (INLA). Second, we utilize Gaussian Processes to create nonlinear covariate
effects for predictors such as unemployment rate, race, and education level. This allows for a more
flexible relationship to be modeled between mortality and these important predictors. Understanding
that the United States is expansive and diverse, we also allow for many of these effects to vary by
location. The amount of flexibility of our model in how predictors relate to mortality has not been used
in previous mortality studies and will result in a more accurate model and a more complete understanding
of the factors that drive mortality. Both the multivariate nature of the model as well as the non-linear
predictors that have an interaction with space will advance the study of mortality beyond what has been
done previously and will allow us to better examine the often complicated relationships between the
predictors and mortality in different regions.
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1 Introduction

Life insurers, among others, are interested in modeling and predicting mortality experience for many
different groups. There are many ways that the life experiences of individuals vary across a population.
Some of these ways are easily quantifiable such as age, sex, and income. Other things are harder to measure
such as happiness, health, and social connection. Even though it is not possible to measure all of the ways
that these lives vary, it is nonetheless expected that life experiences will tend to be more similar in areas
that are geographically closer to one another.

Before approximately 30 years ago mortality models were largely deterministic. Dickson et al. (2020) give
a good overview of the development of these methods. Now stochastic modeling is the standard practice for
mortality modeling with Lee and Carter (1992) proposing one of the earliest stochastic models for mortality.
Despite their model’s shortcomings, such as lack of smoothness across ages and a lack of spatiotemporal
interactions, it is an improvement over purely deterministic methods and has good interpretability.

Many variations on the Lee-Carter model have been proposed; the Cairns-Blake-Dowd model (Cairns
et al. (2006)) has been widely used for modeling morality improvements. Cairns et al. (2009) provide an
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overview of the differences and a quantitative comparison between the Carins-Blake-Dowd model and the
Lee-Carter model. Melnikov and Romaniuk (2006) and Booth and Tickle (2008) discuss these different
models as well as older models and how they have been used for mortality forecasting.

One thing that is missing from all of these models is spatial correlation. It seems quite reasonable that
mortality would be similar in areas that are geographically closer as there are similarities in areas that are
close together that are not easily measured. Thus, including spatial effects into our modeling could improve
our understanding of mortality. Many researchers have incorporated spatial and spatio-temporal effects into
their mortality modeling. Clayton and Kaldor (1987) and Manton et al. (1989) were some of the first to
use Empirical Bayes to account for spatial correlation. A review of Empirical Bayes and fully Bayesian
approaches for modeling spatial variation in mortality rates is given by Bernardinelli et al. (1995). Waller
et al. (1997) used a hierarchical Bayesian approach with spatial, temporal, and spatio-temporal effects to
model county-level lung cancer death rates in the state of Ohio. Xia and Carlin (1998) studied the same data
using a similar technique but also incorporating relevant covariates such as age and smoking prevalence.

More recently Ayele et al. (2015) used Gaussian Markov random fields to account for spatial variation in
an additive logistic regression model for child mortality rates in Ethiopia. Dwyer-Lindgren et al. (2016) used
a Bayesian approach to fit a hierarchical model. Their model looked at the relationship between the effects
at adjacent counties and utilized county-level covariates. Alexander et al. (2017) fit a hierarchical model to
obtain subnational mortality estimates. Their model, which smoothed across space and time turned out to
be a better fit for mortality data, both simulated U.S. data and real French data divided into 19 age groups,
than simpler methods. The improvement was especially noticed in areas with low population.

Recently Gibbs et al. (2020) fit a spatio-temporal model to county-level mortality data from the contiguous
United States using conditional auto-regressive priors and a county-varying linear time trend to each age
group. Here we utilize the same data and build on this model in two signficant ways.

First we model all age groups together in a multivariate spatio-temporal model. Using a multivariate
approach adds significant complexity to the model but improves the model in a similar way that adding
spatial or temporal correlation would, by allowing data at one age group to borrow strength from data at
neighboring age groups (Royle and Berliner, 1999; Gelfand, 2021). We address the added complexity by
using strong Markov assumptions on the correlations and estimate the model parameters with Integrated
Nested Laplace Approximations (INLA) (Blangiardo and Cameletti, 2015). This is one of the first significant
applications modeled using multivariate INLA models for spatio-temporal data (Vicente et al., 2020).

The other novel element in our mortality model is including non-linear and spatially-varying covariate
effects. This allows for an unprecedented degree of flexibility in how variables such as employment, education
level, and others affect mortality. Functionally, the covariates are treated as processes on the covariate space
and are given Gaussian process priors (Shi and Choi, 2011). By allowing these to vary across space we remove
the restriction that the predictor variables affect mortality equally across the whole country. It was seen in
Gibbs et al. (2020) that this improved the model and helped interpret the importance of the covariates.

The remainder of this article is organized as follows: Section 2 discusses the data that are analyzed in
this study, Section 3 introduces the statistical models, methods, and notation that are used to perform the
analysis, Section 4 conveys and discusses the results of this analysis, and Section 5 concludes with discussion
of model limitations and potential future work.

2 Data

In this analysis we use data from Division of Vital Statistics of the National Center for Health Statistics,
part of the Centers for Disease Control and Prevention. The data contain information about every death
that occurred in the United States from 2000 to 2017 along with demographic information including age,
sex, county of residence, county of death, race, and marital status. In this analysis we only use county of
residence (and not county of death), and restrict our attention to those counties of residence belonging to
the contiguous United States.

Using census data with interpolation, we are able to obtain the age group mortality exposure for all of
the counties during this time period. The census data are available with ages being placed in 18 buckets,
with the first being for those 0-4 years of age and the last being those individuals who are 85 years old or
older. The mortality data are divided into the same age buckets so that for each sex, county, year, and age
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Figure 1: The observed mortality rate for each county in the contiguous United States for females aged 55-59
in 2010. Mortality rates are multiplied by 1000 for readability.

group, we had an exposure and the number of people who died.
As the census data are only gathered every ten years, the majority of the population data we have are

estimates. However, we have exact information on the number of deaths. This mismatch results in some
anomalies whereby there are some sex, county, year, age group combinations where the data indicate that
there are more people who died than were living in the county at the time. There are also some counties
whose populations are quite small; after dividing the counties by sex and into 18 age groups, there are some
counties whose population for a given group was zero in a given year. Counties which have an exposure of
zero or more deaths than exposures are combined with their neighbor with the largest population. After
such modification, we have 3092 counties that we consider in the model. A full list of counties which were
combined can be found in Appendix A. We use the term “county” to refer to the subdivisions throughout
all states in the United States, including Louisiana where they are actually parishes.

Figures 1 and 2 show the observed mortality for females age 55-59 and 85+, respectively, and provide
evidence of some spatial correlation. Mortality tends to be higher in the south and lower in the Midwest.
Similar trends exist across both sexes and other age groups. Figure 3 shows the observed countrywide
mortality rate for each age group and sex combination. In general, males have higher mortality than females.
Mortality increases with age, with the exception that the youngest group sees a mortality improvement upon
reaching age 5. Across time there appears to be mortality improvement for those individuals 45+.

Six different covariates are used in this analysis: Unemployment, Race, Home Value, Education, Marital
Status, and Household Size. These covariates are measured at different frequencies (see Table 1). The
covariates of unemployment, race, and home value are divided into 20 different groups based on quantiles.
The remaining covariates of education, marital status, and household size are divided into groups where each
group consists of the states that have the same value for the covariate. Those covariates have respectively 44,
43, and 29 unique values and so that is the number of resulting groups. The arithmetic average of the values
in each group is used as the “location” for that group for calculating a Matérn correlation between points.
The covariates appear to also have some strong spatial dependence. In Figures 4 and 5, unemployment and
race values for 2010 are plotted on the map. There is clear spatial dependence in both of these graphs. The
unemployment data are complete except for a few counties in Louisiana for 2005 and 2006 (see Appendix B).
(These correspond to the parts of Louisiana that were most heavily affected by hurricane Katrina.) Similarly
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Figure 2: The observed mortality rate for each county in the contiguous United States for females aged 85+
in 2010. Mortality rates are multiplied by 1000 for readability.

Covariate Name Meaning Measuring Frequency Source
Unemployment Unemployment rate Every County in Every Year Bureau of Labor and Statistics

Race Percent of head of households that are white Every County in 2010 Census Bureau
Home Value Typical value of a home Every State in Every Year Zillow
Education Percent of people 25 or older who have a bachelor’s degree or higher Every State in 2010 Census Bureau

Marital Status Percent of people 25 or older who are married but not seperated Every State in 2010 Census Bureau
Household Size Average household size Every State in 2010 Census Bureau

Table 1: Covariates used in the model along with what they are measuring, frequency of measurement, and
the source of the data.

we are missing home value information (Appendix C) for a few states in the early 2000s. These missing data
were dealt with by simply letting those affected observations not have an unemployment and home value
effect during those times.

3 Methods

For each sex we fit a distinct model, which are identical in form. Let yakt be the number of deaths
that occurred within age group a in county k during year t. In this application, a ∈ {1, 2, . . . , 18}, k ∈
{1, 2, . . . , 3092}, and t ∈ {1, 2, . . . , 18}. The number of people within age group a in county k during year t
is known, and so the binomial likelihood is appropriate for this data:

yakt|πakt ∼ Binomial(nakt, πakt)

Here πakt is the annual mortality probability for someone who is in age group a in county k during year
t and nakt is the corresponding population count. We can then relate πakt to the desired effects using the
logit link function:

ln

(
πakt

1− πakt

)
= β0 +

3∑
i=1

Fi(xk) +

3∑
i=1

Gis(xkt) + ϕk + δt + ψa + γakt
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Figure 3: The countrywide mortality trends for each age group and sex. The plots on the left are for females
and the plots on the right are for males. The top plots are for ages 44 and under, and the bottom plots are
for ages 45+.
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Figure 4: A map of the contiguous United States showing the unemployment rates in 2010.

Figure 5: A map of the contiguous United States showing the proportion of heads of household in the county
which are white.
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The parameter β0 is an overall intercept for the model. Each Fi (i ∈ {1, 2, 3}) is a nonlinear covariate effect
for the covariates of education, marital status, and household size. For each of these covariate effects we use a
Gaussian process with the Matérn correlation function. This is a flexible way to allow the covariates to have
nonlinear effects on mortality. Similarly the Gis are the nonlinear covariate effects for unemployment, race,
and home value. Once again these are Gaussian Processes with the Matérn correlation function; however,
instead of simply having one effect for the entire dataset we allow each state to have its own effect. For
the purpose of these effects we define a state to be one of the 48 contiguous states in the United States (all
but Alaska and Hawaii) and Washington D.C. We impose a conditional autoregressive prior on the different
state effects so that, conditional on all the other states, the effect for a given state only depends upon those
states with which it shares a border. For identifiability, all of the individual covariate effects have a sum to
zero constraint.

The spatial effect is broken down into two components:

ϕk = uk + vk

u|τu ∼ N (0, τ−1
u I)

v|τv ∼ N (0, τ−1
v W−1)

with precision parameters τu and τv, where u is our iid spatial effect and v is our structured spatial effect. For
identifiability, u and v have a sum to zero constraint. Our structured effect follows the type of conditional
autoregressive model proposed by Besag et al. (1991). We say that county i and county j are neighbors if
they share a border and denote this relationship as i ∼ j. We denote the number of neighbors of county i
by ni. Note that in our specification, a county is not its own neighbor. W is a county adjacency matrix
where, for i ̸= j, Wij = 1 if i ∼ j and Wij = 0 if i ≁ j. The diagonal entries are Wii = −ni. This creates a
conditional independence where conditioned on all other counties, the effect for a given county only depends
upon those counties with which it is a neighbor. This structure is more apparent if we write the effect as:

vi|vj ∼ N

 1

ni

∑
j:i∼j

vj ,
1

ni
τ−1
v

 for j ̸= i

However, both formulations are equivalent.
The temporal effect is also broken down into two components:

δt = bt + ct

b|τb ∼ N (0, τ−1
b I)

c|τc ∼ N (0, τ−1
c R−1

c )

with precision parameters τb and τc and structure matrix Rc, where b is the iid temporal effect and c is the
structured temporal effect. For identifiability, b and c have a sum to zero constraint. The structured effect
follows a random walk of order 1 so that Rc is an 18× 18 tridiagonal matrix of the form:

Rc =



−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1


(1)

This implies that, given ct−1 and ct+1, ct is conditionally independent of ct∗ for all other t∗ not equal to
t− 1, t, or t+ 1.

We then have an age group effect again broken down into two components:

ψa = fa + ga

f |τf ∼ N (0, τ−1
b I)

g|τg ∼ N (0, τ−1
c R−1

g )
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Model DIC (Female) DIC (Male)
Full Model 3,817,853 4,266,276

Only Countrywide 3,818,372 4,266,666
No Covariates 3,819,075 4,266,790

Table 2: Deviance Information Criterion (DIC) for the three different model versions that were fit to both
the male and female data.

with precision parameters τf and τg and structure matrix Rg, where f is the iid age group effect and g is the
structured age group effect. For identifiability, f and g have a sum to zero constraint. The structured effect
follows a random walk of order 1 so we have that Rg is an 18× 18 tridiagonal matrix that coincidentally is
the same as Rc from Equation 1 because the number of age groups and the number of time points happen
to be the same. Then, given ga−1 and ga+1, ga is conditionally independent of ga∗ for all other a∗ not equal
to a− 1, a, or a+ 1.

Finally we have an iid error term:

γakt
iid∼ N (0, τ−1

γ )

where τγ is a precision parameter. All precision parameters (τ) are given identical gamma priors with mean
2000 and variance 4000000.

Rue et al. (2009) proposed a deterministic method for performing Bayesian inference using the Integrated
Nested Laplace Approximation (INLA) which is implemented in software called R-INLA (Lindgren and Rue,
2015). For a given model, the computation time in R-INLA tends to be much faster than traditional MCMC
algorithms that have been used for exploring the posterior of a model. As a result, this methodology has
become quite popular in recent years. Blangiardo and Cameletti (2015) is a nice textbook on the theory
and implementation of basic spatiotemporal inference using the package. Rue et al. (2017) and Bakka et al.
(2018) provide reviews of INLA and how it works with spatial data. We use this method for our computation
as we have a large problem and want to be able to conduct our inference quickly.

4 Results

The model described in Section 3 was fit to the data described in Section 2. We tried three different
versions of the model. Specifically, we used one version where we eliminated all the covariate effects (Fi’s
and Gis’s), a second version where we used only countrywide effects and no state-specific covariate effects:

ln

(
πakt

1− πakt

)
= β0 +

6∑
i=1

Fi(xk) + ϕk + δt + ψa + γakt,

and a third version which was the full model described in Section 3. Table 2 shows the Deviance Information
Criterion (DIC) value obtained for each model fit on both sets of data. Since the DIC was lowest for the full
model proposed in Section 3, this model was chosen for the remainder of the analysis.

Figures 6 and 7 show the posterior mean of the spatial effect (ϕk) for the counties in the United States.
We see that in both cases the spatial patterns of the data appear to be very similar. We also see the same
pattern manifesting itself that we saw earlier where there tends to be higher mortality in the South and
lower mortality in the upper Midwest.

One important aspect of the results to consider is how mortality is changing over time. Figure 8 shows
the posterior mean and 95% credible interval for the temporal effects (δt). From 2000 through roughly 2014,
the trend for both males and females is of mortality improvement over time (i.e., a decrease in δt), though
the patterns are not smooth or monotonic. Around 2014, there begins to be a small uptick in the mortality.
One potential cause for this increase could be a spike in the “deaths of despair” that are often discussed in
the mortality literature (see, for example, Scutchfield and Keck (2017)).

Figure 9 shows the posterior mean and 95% credible interval for the age group effects (ψt). These results
are consistent with the results seen in the raw data with respect to the age group. Namely, mortality improves
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Figure 6: Posterior mean of the spatial effect (ϕk) for the model fit to the female data.

Figure 7: Posterior mean of the spatial effect (ϕk) for the model fit to the male data.
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Figure 8: Posterior mean and 95% Credible interval of the temporal effects (δt). Male values are in blue and
female values are in red.

Figure 9: Posterior mean and 95% Credible interval of the age group effects (ψt). Male values are in blue
and female values are in red.

upon aging out of the youngest age group, but then consistently deteriorates as age increases. The pattern
is seen to be quite similar between the males and females.

Figures 10 and 11 display the posterior means and 95% credible intervals for the covariate effects corre-
sponding to education, marital status, and household size. Although the entire credible interval contains 0 for
each of these covariates, they nonetheless present nice illustrations of the information that can be obtained
when the covariates are allowed to have nonlinear effects. As an example, consider the case of the education
covariate. If this had been treated as a linear effect, the result would like have been a slight negative slope.
However, just having a negative slope does not communicate as much information as our nonlinear effect.
It can be seen from the figure that, rather than having a monotonic linear relationship, there is a trend of
slow decrease in mortality as education increases, until the percentage of people with a Bachelor’s degree
hits 25%. Then follows a quick decline in mortality followed by a leveling off. Thus demonstrates the added
flexibility and more nuanced conclusions that can be obtained by utilizing nonlinear covariate effects.

Figure 12 plots the posterior means and 95% credible intervals for the unemployment effects in the states
of California, Colorado, and North Carolina. These plots show the interaction between space (geographic
location) and the impact of unemployment on female mortality. In Colorado, it can been seen that the
relationship between mortality and unemployment is minimal. North Carolina and California, on the other
hand, each have significant nonlinear effects; moreover, the shape of these effects are quite different between
the two states. Similar plots showing these state unemployment effects for each of the states can be found in
Appendix D. Similar ideas for the covariates corresponding to race and home value can be seen in Figures 13
and 14, respectively. For example, the effect of race on female mortality can be seen to have a significantly
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Figure 10: Posterior mean and 95% credible interval for the covariate effects (Fi(xk)) for the model fit to
the female data. The effects displayed correspond to education (left, i = 1), marital status (center, i = 2),
and household size (right, i = 3).

Figure 11: Posterior mean and 95% credible interval for the covariate effects (Fi(xk)) for the model fit to
the male data. The effects displayed correspond to education (left, i = 1), marital status (center, i = 2),
and household size (right, i = 3).
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Figure 12: Posterior mean and 95% credible interval of the unemployment effects (G1s(xkt)) for selected
states for the model fit to the female data.

Figure 13: Posterior mean and 95% credible interval of the race effects (G2s(xkt)) for selected states for the
model fit to the female data.

steeper slope in the state of Montana than it does in either Alabama or North Carolina. All of the state
effects for race and home value can be found in Appendices E and F respectively.

Figures 15 and 16 show the posterior means of the mortality rates for females aged 55-59 and 85+
respectively. These are the same groups corresponding to the observed mortality rates displayed in Figures
1 and 2 in Section 2. The fitted values display similar general patterns to those seen in the observed
data. One difference that is noted, however, is that the fitted mortality rates exhibit a greater degree of
spatial correlation than do the observed ones. This is to be expected, as the fitted model allows for spatial
correlations.

5 Conclusion

We have fit a multivariate spatio-temporal model to mortality data in the contiguous United States. This
model has built on the existing mortality modeling literature in two significant ways. First, we model all age
groups together to create a multivariate spatio-temporal model. This allows for the borrowing of information
not only across space and time but also across the different age groups of the model.

The other significant contribution is the inclusion of nonlinear and spatially-varying nonlinear covariate
effects on mortality. These nonlinear and spatially-varying covariate effects allow us to see how things such
as education, unemployment and race affect mortality and how those effects change over space. By including
a nonlinear education effect, we were able to see that while mortality generally improves as education
increases, there becomes a point where additional education seems to no longer provide additional mortality
improvement. Allowing the covariates effects to change over space allowed us to observe both how the
magnitude of the effect changes across states, as we saw for race and home value, and how the shape of
the effect changes across state values, as we saw for unemployment. This flexibility allowed us to observe
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Figure 14: Posterior mean and 95% credible interval of the home value effects (G3s(xkt)) for selected states
for the model fit to the female data.

Figure 15: The posterior mean of the mortality rate for females aged 55-59 in 2010. The mortality rate is
multiplied by 1000 for readability.
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Figure 16: The posterior mean of the mortality rate for females aged 85+ in 2010. The mortality rate is
multiplied by 1000 for readability.

some otherwise undetectable trends, such as the positive relationship between unemployment and mortality
improvement in some areas, a negative relationship in some, and no relationship in others.

There are ways that the model could be improved. By using the Kronecker product on the precision
matrices of our structured random effects we could create space-time, space-age, and age-time interactions.
This could help to make the model more realistic, as mortality is probably not changing over time and age in
the same way at all points in the country. We could also create a model in which the covariates interact with
age or time so that rather than looking at how the effect of a covariate, such as unemployment, on mortality
changes across space, we could instead explore how it changes across time or the age of the individuals.
Both sexes could also be modeled together increasing the dimension of the model and allowing for additional
borrowing of strength.
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Appendix A County Adjustments

Table 3 contains the FIPS codes for those counties where we had to adjust the counties for the purpose
of the analysis as well as the reason for the adjustment.

Original FIPS Adjusted FIPS Reason for Adjustment
08079 08007 Low population
08111 08067 Low population
30055 30085 Low population
30069 30027 Low population
31009 31041 Low population
31075 31033 Low population
46017 46041 Low population
46113 46102 County name and FIPS were changed in 2015
48173 48329 Low population
48259 48275 Inconsistent data
48261 48215 Low population
48269 48275 Low population
48301 48389 Low population
48311 48013 Low population
48443 48465 Low population
49009 49047 Low population
51515 51019 County boundary was adjusted in 2013
51720 51195 Counties were combined

Table 3: Table of FIPS adjustments and justifications
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Appendix B Counties with Unavailable Unemployment Data

Unemployment data was unavailable in 2005 and 2006 in the state of Louisiana for the 7 counties with
the following FIPS codes: 22051, 22071, 22075, 22087, 22089, 22095, and 22103.

Appendix C States with Unavailable Home Value Data

We were unable to acquire typical home value data for Montana during 2000-2001 and for North Dakota
during 2000-2004.

Appendix D State Unemployment Effects

D.1 Female Model

Here are the state unemployment effects for all 49 states considered (the contiguous U.S. and Washington
D.C.) for the Female model. We have the effect for each state plotted along with 95% credible interval.
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D.2 Male Model

Here are the state unemployment effects for all 49 states considered (the contiguous U.S. and Washington
D.C.) for the Male model. We have the effect for each state plotted along with 95% credible interval.
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Appendix E State Race Effects

E.1 Female Model

Here are the state race effects for all 49 states considered (the contiguous U.S. and Washington D.C.) for
the Female model. We have the effect for each state plotted along with 95% credible interval.
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E.2 Male Model

Here are the state race effects for all 49 states considered (the contiguous U.S. and Washington D.C.) for
the Male model. We have the effect for each state plotted along with 95% credible interval.
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Appendix F State Home Value Effects

F.1 Female Model

Here are the state home value effects for all 49 states considered (the contiguous U.S. and Washington
D.C.) for the Female model. We have the effect for each state plotted along with 95% credible interval.
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F.2 Male Model

Here are the state home value effects for all 49 states considered (the contiguous U.S. and Washington
D.C.) for the Male model. We have the effect for each state plotted along with 95% credible interval.
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