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Abstract

Regions with similar characteristics often exhibit comparable mortality patterns. Recent papers show
that similarity can be expressed spatially (areas closer together are more likely to have similar experience).
That similarity can also be expressed in other dimensions like rurality, political affiliation, health, and
socioeconomic status. In this study, we explore mortality similarity independent of spatial location in the
United States. We construct county-level mortality curves for both males and females in the contiguous
United States using cubic splines and derive regression coefficients from these splines. These coefficients
form the basis for clustering counties with similar mortality patterns, revealing that three clusters are
generally optimal. Clustering is performed for each individual year as well as for all years from 2000
to 2021 combined. Our findings indicate that while the cluster-level mortality curves exhibit broadly
similar shapes, significant differences emerge particularly at ages 5 – 35. We use multinomial logistic
regression and a random forest to analyze the differences between these clusters based on several covariates
collected from the constituent counties, such as population density, race, marriage level, household size,
unemployment rate, and education. The results suggest that the clusters have significant differences with
respect to these covariates and that the clusters largely reflect an urban-rural divide. Additionally, we
examine how the compositions of these clusters change over time. Finally, we compare the performance
of the cluster-level mortality curves to those formed at the state level at predicting future mortality and
find that the cluster-based mortality curves are generally superior to the state-level models in this regard.
Practicing actuaries can use these clusters to build mortality models at the county level, enabling better
predicting, pricing, and risk management.

1 Introduction

Accurate mortality inference, prediction, and forecasting are essential for many stakeholders. Community
leaders are interested in population aging to understand demand for social services and the impact of
public health policies (Kindig and Cheng, 2013; Masters et al., 2015). Private organizations and actuarial
teams allocate resources such as pensions, life insurance rates, and predicted payouts (Brown and Orszag,
2006; Wilmoth and Horiuchi, 1999).

In this analysis, we focus on mortality rates in the United States. U.S. mortality rates are the
focus of many recent papers (Ho and Hendi, 2018; Woolf et al., 2018; Case and Deaton, 2017). But
modeling the mortality rates of the entire United States is an oversimplification. The people of the
United States are not a monolith. They vary on many dimensions (Xu et al., 2020) including spatially
(climate, elevation, humidity), culturally (politics, religion, community), economically (income, wealth,
poverty), and healthcare (access, quality, price). Building a model without allowing for flexibility on
these dimensions can lead to poor model fit and potentially poor decisions.

Many of the current papers modeling county-specific mortality do not use the spatial relationships
to borrow strength between counties (Dwyer-Lindgren et al., 2016; Monnat, 2018; Currie and Schwandt,
2016; Clark and Williams, 2016). Other recent papers use the spatial relationships between counties to
improve the mortality predictions (Gibbs et al., 2020; Yang et al., 2015). But some counties may be
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Figure 1: Example County Level Mortality Curves, Utah County

very similar even if they are not especially proximate. For example, a relatively rural county in Western
Washington may be more similar to a rural county in Nebraska than it is to a neighboring county which
is mostly a suburb of Seattle (and perhaps less rural). This paper groups counties more flexibly, based
on their mortality experience, relying less on their spatial location. Singh and Siahpush (2014) references
urban and rural disparities in mortality, while Chetty et al. (2016) discusses the impact of income on
mortality, suggesting that mortality grouping may rely more on characteristics of a region rather than a
borrowing strength spatially.

Initially we will investigate the shape of the curves as a function of age alone. Due to data constraints,
we estimate this curve by aggregating the mortality information of ages which are close together; we then
use the methods described in Section 2.2 to construct a continuous mortality curve as a function of age.
This process produces curves that look like the example in Figure 1, which has the male and female
mortality curves from data aggregated over the period from 2000-2021.

For many counties, however, this aggregation is insufficient to gain insight into the true mortality
rate. This issue is particularly prevalent in counties that have very small populations, which may have
too few individuals to accurately assess mortality risk. There are some common practices that have been
suggested in the past, such as aggregating the data for a single county over many years, or by using
state level data (Kleinman, 1977). However these methods can fail to meaningfully account for a variety
of factors; aggregating data over multiple years can cause abnormal events (such as a global pandemic)
to give a skewed perception of true typical mortality, and using state level data does not capture the
difference in varying parts of the state, such as the rural-urban divide.

This is one issue that this paper seeks to address. Specifically, we seek to define some method of
determining mortality curve similarity across counties in the continental United States, finding natural
groupings or clusters of counties. We can then aggregate the mortality information within these clusters
to properly assess the rate of mortality in these “similar” counties. A secondary objective is to then
interpret these clusters, to try to understand how these clusters can be characterized, as well as how the
composition of the clusters changes over the years.

One apparent difficulty with this goal is the functional nature of the data that we are dealing with.
Although data is collected discretely, aging is a continuous process; as such, the mortality curve (a
function of age) is also continuous. This can present difficulties for traditional statistical methods.
Several methods have been developed for representing and clustering such data. For example, Tarpey
and Kinateder (2003) discussed the capabilities of k-means clustering when representing each curve in
the finite dimensional subspace spanned by the eigenfunctions of its covariance kernel. More recently
Bouveyron and Jacques (2011) explored model-based clustering methods for univariate curves, specifically
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time series, noting that finite dimensional curve representations often are either discretized forms of the
continuous process (measurements at intervals), or represented by spline basis functions. We use the
cubic spline representation of the curves which are univariate functions of age, and perform a linear
regression on them as this is a straightforward way of representing these curves (Faraway, 1997), and
then use the resulting coefficients to perform the clustering.

The remainder of this paper is organized as follows: Section 2 describes the data and methodology
used in this study; Section 3 gives the results of the clustering and compares the mortality predictions of
cluster-based models to those of state- and national-level models; Section 4 uses regression and random
forest analyses to lend interpretations to the clusters; and Section 5 offers some concluding remarks.

2 Methodology

2.1 Data

The data used to create the mortality curves was collected from the Division of Vital Statistics of the
National Center for Health Statistics (2023), which itself is a subdivision of the Centers for Disease
Control and Prevention; these data contain demographic and mortality information for every individual
who died in the United States between 2000 and 2021. The total population of each demographic group
was obtained via the estimates made by the United States Census Bureau. The census data aggregates
ages into 18 groups of five years, with group one being ages 0-4, group two being ages 5-9, continuing
until the age of 85, over which all are assigned to the eighteenth group (Gibbs et al., 2020). As a result,
our data is also binned and to increase interpretability the groups 1-18 were taken as the mean age in
the group; for the first 17 groups this was simply the median age (2 for group one, 7 for group 2, etc.),
until the group 18 which we assigned to be 90.

There are other issues with the data. Several counties were very small and had population estimates
of zero at some point in time for different age groups. Others had more reported deaths in an age group
than people estimated to be in that age group. Finally, certain counties changed their designation or
underwent boundary changes over the course of the 20 years that data were gathered. To solve these
issues, we combined counties where the issues were present with their respective most populous adjacent
counties; details are given in Table 8 and can be seen on the map in Figure 17, both of which can be
found in Appendix A.

We also have collected various covariates for each county relating to the county’s demographic charac-
teristics. These covariates, which include proxies for race, household size, education level, unemployment
rate, marriage rate, land area, and population density, are used to help interpret the clusters of counties
that result from our analysis. These variables are described in Section 4.1.

2.2 Curve Definition and Estimation

Almost 200 years ago Benjamin Gompertz noted that mortality increases exponentially, particularly after
age thirty (Gompertz, 1825). Traditional literature posits that after age 85 there is a deceleration in
mortality increases, however more recent studies disagree with this assertion, claiming that mortality
continues to increase at an exponential rate (Gavrilov and Gavrilova, 2011). Because of this, a mortality
curve can be defined as the natural logarithm of the mortality rate for a given age, so that after age 30
the curve is a relatively linear function of age.

However, for forecasting and understanding mortality, this fact alone is insufficient. Building off
of Gompertz’s work, Makeham proposed that mortality is best modelled by the sum of the previously
described age component as well as an additional age-independent component (Makeham, 1860). This
secondary component (which itself is the result of many disparate parts such as accidents, disease, war,
etc.) is of particular interest to many mortality researchers, such as Marmot et al. (1981), where the
effects of excessive alcohol on mortality were studied.

Mortality curves can be represented by various functions that model continuous processes, such as
polynomials and splines. In our case cubic splines are preferable, as they allow us to model differing
behaviors over various ages, accounting for relatively high infant and young adult mortality. For example,
consider the mortality curve in Figure 1, but now with the two interior knots shown in Figure 2. Before
the first interior knot we see a steep decline in the likelihood of death after infancy. Between the
interior knots, covering individuals from puberty to young adulthood, the curve increases more steeply
than expected from age alone. After this, the rate of increase slows dramatically, settling into relative
linearity after the upper knot. This increased mortality in youth is particularly pronounced in male
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Figure 2: Utah County Mortality Curve Splines with Knots Defined

curves. Because this hill-like structure can at least partially be attributed to an increase in risk-taking
behaviors, this phenomenon is colloquially known as the accident or young adult mortality hump; for
more discussion of causes of this hump see Remund et al. (2018). As a result of our mortality curves
having distinct forms and features over these three age ranges, we have chosen the interior knots for the
splines at ages 15 and 35.

To avoid undefined values in counties with no recorded deaths (or individuals) at certain ages, we
introduce a small correction to the traditional form, as shown in Equation (1).

M(a) = log

(
(# Deaths at age a) + 1

(# Individuals at age a) + 1

)
(1)

Letting this functional corrected log death rate at age a be M(a), we have that in general the expected
value of the mortality curve function for a geographical region may be represented as Equation (2):

E[M(a)] =

5∑
j=0

βjbj(a), (2)

where the bj(a) functions (j = 0, . . . 5) are a set of basis functions for 0 ≤ a ≤ 90, with b0(a) = 1,
an intercept term. These basis functions are represented by the curves in Figure 3; the βj terms are
regression coefficients on these basis functions. Further discussion of the basis functions can be found
in Beer et al. (2020). This is the model used when we consider the overall (i.e., not varying by year)
mortality for a county. Each county’s set of regression coefficients (β0, . . . , β5) ∈ R6 form the basis for
the overall county clustering; this process is performed separately for the male and female models.

We also use yearly data to fit a hierarchical random coefficients model to model the curves of each
county, treating age as a fixed effect and year (2000-2021) treated as a random effect. However, we note
that the COVID-19 pandemic significantly impacted mortality across the United States — the pandemic
was a year-specific phenomenon but not a random effect. Thus we add a COVID indicator into the
model. We treat the presence of COVID as a fixed effect on the model, and we explore its consequence
with each of the spline basis functions via an interaction effect, with the main effect being absorbed into
the intercept.

This results in the model in Equation (3), where the total regression coefficient on the jth basis
function, bj(a) is the sum of βj , the fixed effect that age has on county mortality over the jth basis
function, and αjy, the deviation that the yth year has from that main effect, and the fixed COVID effect,
γjI(y), where I(y) is the indicator function defined in Equation (4).
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Figure 3: Basis Functions for County Splines

E[M(a, y)] =

5∑
j=0

γjI(y)bj(a) +
5∑

j=0

(βj + αjy)bj(a)

=

5∑
j=0

(βj + αjy + γjI(y))bj(a)

(3)

I(y) =

{
1 if y ≥ 2020

0 if y < 2020
(4)

These coefficients are then used as coordinates in R6, (β0 + α0y + γ0I(y), β1 + α1y + γ1I(y), ..., β5 +
α5y+γ5I(y)), which can now be used to cluster similar counties together for each year separately, finding
natural groupings of counties that exhibit, in some sense, similar shapes.

2.3 Curve Clustering and Exploration

We primarily employ hierarchical clustering (Ward Jr, 1963) to group counties based on mortality curve
coefficients, and the results shown are based on this method. We note, however, that our results do
not seem to be sensitive to the clustering method used, as k-means clustering (MacQueen et al., 1967)
produced very similar results. Using the fixed effects, we determine overall county clusters, while the
random effects allow us to cluster each individual year to observe how the clusters evolve over time.

Choosing an optimal number of clusters is challenging due to the absence of “ground truth” groups
for county mortality against which to compare. Metrics like the Calinski-Harabasz Index (Caliński and
Harabasz, 1974) and the GAP statistic (Tibshirani et al., 2001) help in selecting the number of clusters,
but their effectiveness varies. The choice of metric can influence the decision for the number of clusters,
and metrics can be inconsistent when clusters are not clear.

Charrad et al. (2014) proposed using an ensemble of relative-performance metrics, creating the R

(R Core Team, 2024) package NbClust. The optimal partition is defined as the one suggested by the
plurality of metrics. When determining the number of clusters to use for further analysis, we use the
clustering suggested as optimal as explained below.

We then compare aggregated cluster curves to state-level curves in predicting log mortality rates using
mean squared error (MSE) to assess accuracy. Each county’s log mortality is predicted using its overall
cluster’s curve, and the MSE from these predictions is calculated. This process is repeated annually,
comparing the predictions to those using state-level curves for each county, determining if clustering
offers predictive advantages over using state curves.
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3 County-Level Clustering Results

3.1 Overall Clustering Results

After creating the curves, counties were clustered as described in Section 2. We explored different numbers
of clusters, ranging from 2 to 10, for our hierarchical clusterings. The NbClust metric results are shown
in Table 1. Recall, these metric numbers are simply the number of metrics which were optimized under
a given number of clusters. The metrics indicate that either 2 or 3 clusters are optimal for both the male
and female clusterings. Note that the spike in metric votes suggesting 10 clusters is due to the upper
limit of our search, causing metrics with small complexity penalties, optimized by more granular clusters,
to select 10.

Female curves either form 2 poorly separated clusters or 3 close clusters as illustrated in Figure 4. In
both the 2 cluster and 3 cluster maps, the green cluster tends to be comprised of more urban counties,
while the other cluster(s) are more rural. We can see that when the female map goes from 2 to 3 clusters,
the new purple cluster is primarily composed of counties previously in the orange cluster; the counties
in this purple cluster are mostly located in the middle and western portions of the U.S.

For the male clusterings, we see similar pictures (see Figure 5), the biggest difference being that the
male clusterings feature more counties in the orange clusters.

Clusters 2 3 4 5 6 7 8 9 10+
Female 6 7 1 4 1 1 0 0 2
Male 3 14 1 1 1 0 0 1 1

Table 1: Suggested Clusterings

(a) 2 Clusters (b) 3 Clusters

Figure 4: Female Clusterings

We choose the clustering method we use for further analysis based on the NbClust suggestion of the
most consistently optimal partitioning. Table 1 shows that a clustering of 3 clusters is suggested for
both men and women, but much more strongly for the female clustering. Thus we will proceed with our
further using 3 clusters for both the male and female models; using the same number of clusters for the
two models also allows us to more easily compare the male and female clusterings.

We note that the clusterings of counties for the female and male mortality curves resulted in 2220 of
the 3007 counties (73.8%) falling in the same overall male and female clusters. Moreover, from Table 2,
we can see that the vast majority of the clustering differences are the result of counties which fall in the
orange cluster in the male clustering falling one of the other two clusters (mostly the green cluster) in
the female model. The reverse is not the case: only 7 of the 1024 counties in the orange cluster in the
female model are in another cluster in the male model. We also note that there are no instances of the
male model placing a county in the green cluster that the female model puts into the purple cluster, or
vice-versa.

Interestingly, across all clusterings, a spatial effect is evident even without imposed spatial structure.
Urbanized counties tend to cluster together (green), rural counties are marked as similar (orange), and a
consistent band of middle American rural counties (purple) emerges in both three-cluster configurations.
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(a) 2 Clusters (b) 3 Clusters

Figure 5: Male Clusterings

Female Cluster
Green Orange Purple Total

Green 765 1 0 766
Male Cluster Orange 582 1017 198 1797

Purple 0 6 438 444
Total 1347 1024 646 3007

Table 2: Counties by Overall Clusters

The shapes of the curves themselves reveal intriguing qualities. To highlight these, we compare the
differences across the curves for the selected clusterings in Figure 6, using the orange cluster as the
reference. Female curves show that the purple cluster is quite similar to the orange (both relatively
rural) in overall mortality levels, but the green (typically urban) cluster has lower overall mortality. The
shapes of the orange and purple mortality curves differ, however, with the orange cluster having better
mortality in the younger ages and the purple counties having better mortality in the older ages. The
largest differences in the curves are at the younger ages; beyond age 50, the mortality rates converge a
bit.

Male curves show a similar pattern, differing significantly until about age 30, then become similar.
Specifically, the purple curve exhibits high mortality until age 25, then more closely aligns with the
orange curve. The green curve shows lower mortality than the other two throughout, but particularly
until age 25.

3.2 Yearly Clustering Results

Using these results, we move forward with the clustering with 3 clusters for the year effects. While
the precise clusters for each individual year vary, the underlying themes in the overall clusterings were
maintained annually, namely a distinct urban-rural divide and a less distinct separation between the two
more rural clusters.

The yearly clusterings were relatively stable in consecutive years (with the notable exception due to
COVID discussed below), with, on average, just under 70% of counties staying in their same cluster in
consecutive years; the results were similar for the male and female clusters, though the female cluster
compositions tended to vary slightly less for the female clusters than for the male clusters.

When considering the movement of counties between clusters from year to year, the orange cluster
appears to be a “transitory” or “intermediate” cluster between the green and purple clusters for both
the male and female clusterings. That is, counties frequently moved between the green and orange
clusters, and between the orange and purple clusters, but very rarely directly between the green and
purple clusters. A total of 372 counties (out of 3007) remained in the same female cluster for the entirety
of the 22 years, while 295 counties remained in the same male cluster for this entire time span. We note
that of the counties that stayed in the same cluster for throughout, they were split nearly evenly between
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(a) Female Curve Differences (b) Male Curve Differences

Figure 6: Cluster Mortality Curve Differences

the green and purple clusters, with only a handful staying in the orange cluster for the entirety.
Considering the mortality curves, it is interesting to note that mortality was slowly trending down-

wards for all ages in each of the clusters from year to year, until 2020 when the COVID-19 pandemic hit,
causing a sudden, predictable spike in mortality across all age groups. COVID also influenced the clusters
themselves. In Figures 7a and 8a (i.e., 2019, immediately preceding the pandemic) we can see 3 distinct
clusters following the trends expected from the overall clustering (Figures 4 and 5). In 2020, however,
the makeup of the clusters changed, with a sharp increase in the number of (particularly rural) counties
whose mortality experience behaved similarly to the (typically) urban counties (Figures 7b and 8b). We
posit that as COVID affected the entire nation, many counties exhibited similar mortality outcomes.
By 2021, as lockdowns and other measures were lifted, clusters largely reverted back to what they were
before the pandemic, but mortality rates stayed relatively high (Figures 7c, 8c). Thus, at least in its
first year, the COVID pandemic appears to not have impacted the mortality in the U.S. in a uniform
manner, causing counties which do not typically have similar mortality to cluster together for the year
2020. These effects are very similar for the male and female models.

3.3 Cluster to Standard Curve Comparison

By clustering similar counties, we seek to gain efficiency in the prediction of future expected mortality.
For example, one mortality curve per county means 3000 different curves. Regional clustering is already
employed for mortality, often in the form of one single mortality curve used for each state. Many states
are a mix of urban and rural areas, and so we explore mortality predictive performance when the nation
is split by state versus when it is split by our clusters.

We compare the selected clustering with state and national level curves using the standard mean
squared error (MSE) between true log mortality rates and predicted log mortality rates. (We also
explored using other metrics such as a population-weighted mean squared error, and obtained broadly
similar results.)

We evaluate two prediction methods for our models. The first method — which we name the “cumu-
lative approach” — aggregates the data from all previous years (for all counties within the appropriate
cluster) to predict a given year, along with the overall cluster identity. The second method (the “yearly
approach”) predicts the mortality of a year based only on the previous year’s cluster and mortality
information. Table 3 presents the model performance for these various methods.

Using 3 clusters consistently outperforms state-level models (and also national-level models, which is
not surprising, as the latter can be viewed as a single-cluster model) on MSE despite using only three
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(a) 2019 Female Clusters

(b) 2020 Female Clusters

(c) 2021 Female Clusters

Figure 7: 2019-2021 Female Clusters

Cumulative Yearly
Nation State Cluster Nation State Cluster

Male 1.137 1.060 0.946 1.194 1.105 0.964
Female 1.735 1.605 1.408 1.794 1.652 1.440

Table 3: MSE for Prediction Models
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(a) 2019 Male Clusters

(b) 2020 Male Clusters

(c) 2021 Male Clusters

Figure 8: 2019-2021 Male Clusters
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instead of 48 different mortality models. This efficiency suggests that three archetypal mortality curves
can provide more accurate predictions for a county’s mortality than the state-specific curves, significantly
improving efficiency.

We do note that considering weighted MSE does cause the state-level models to slightly improve their
performance relative to the cluster-level models. However, weighting MSE by population may not be the
best metric. This approach primarily judges curve performance based on how well the curves predict
population centers, which do not typically need aggregation. States with many rural counties often have
one or two large metropolitan areas, such as their capital, and so the state aggregated curves predict
these centers well but fail in rural areas. By treating each county individually, unweighted MSE reveals
that low population density areas are better predicted with cluster curves, needing only two clusters to
outperform state-level curves.

Figure 9 shows that increasing the number of clusters does indeed enhance predictive performance, but
this improvement tends to be minimal beyond three clusters. Both the cumulative and yearly methods
outperform their respective state-level models with as few as two clusters. We again note that the results
are similar for the male and female models.

(a) Male MSE (b) Female MSE

Figure 9: Curve Predictive Performance

To further analyze prediction performance, we calculate the partial MSEs of each clustering — these
are shown in Table 4. We notice a few things from these results. First, the cluster-level models outperform
their state-level counterparts in the areas represented by both the orange and green clusters, whereas
the opposite is true for the green cluster, where state-level curves perform better. Given the nature of
the clusters, this is perhaps not surprising. Consider a specific urban county in a given state. As the
green cluster is composed of more urban counties, and these urban counties comprise the bulk of their
states’ populations, the state-level model is largely using the urban data from its own state to predict
this (urban) county’s mortality, whereas the cluster-level model is combining data from mostly urban
counties in many states. On the other hand, the fact that the cluster-level model outperforms the state-
level model in the areas represented by the orange and purple clusters indicates that there is real value
to be gained in predicting rural mortality by borrowing strength from rural areas in other states. Finally,
we note that both models perform much better in the areas represented by the green cluster than in
those belonging to the orange cluster, and worse yet in those represented by the purple cluster.

Green Cluster Orange Cluster Purple Cluster
State Cluster State Cluster State Cluster

Male 0.189 0.232 0.880 0.791 3.291 2.805
Female 0.450 0.541 1.504 1.245 4.217 3.509

Table 4: Partial MSE for Each Cluster

Overall these results indicate that three clusters seems to be the optimal choice; the decrease in MSE
is a matter of significantly diminishing returns after 3 clusters, and this clustering is also simple enough
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to allow for meaningful cluster interpretation, which we will explore further in Section 4.

4 Cluster Interpretation

We have previously suggested that the broad categories we find when we perform county level mortality
clustering are urban versus rural, but there may be more nuanced causes of this divide. Here we attempt
to gain further insights into the drivers of the differences in the cluster mortality curves and to try to
lend interpretations to the clusters themselves where possible; we do this by examining the counties (and
their underlying properties) that comprise each cluster.

4.1 Covariates and Clusters

We considered a number of county-level covariates, which we used to help characterize and interpret
the clusters. In particular, we collected, for each year of the analysis, variables related to education
level (measured by percentage of adult county residents with a bachelor’s degree), percentage of county
residents who were married, unemployment rate, race (measured by percentage of the heads of household
who is white), and population density. In addition, we also considered average household size (by number
of occupants) and land area of the county, whose values were only available for 2010. While the clustering
of counties was performed both on a yearly basis in addition to the overall (composite) clustering spanning
all years, we use the overall clusterings as we proceed to analyze and interpret the clusters in terms of
the covariates of their counties. While the composition of the clusters is, in general, relatively stable, the
movement of counties between clusters does have some effect of obscuring the relationships between the
clusters and covariates.

Figure 10 shows the mean population densities (calculated as number people per square kilometer of
land area) of the clusters through time. We very clearly see that the green cluster represents counties
with greater population densities (i.e., urban counties), whereas the other two clusters have counties
much lower population densities (i.e., more rural counties). We find that the effects for this — and all
other covariates — are more or less similar in the male and female models.

Female Male
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Figure 10: Population Density by Cluster

Figure 11 gives the mean land areas of the counties by cluster, which do not vary through time.
Looking at these land areas, we see that the purple counties are the largest but, perhaps somewhat
surprisingly, the green cluster has larger counties than does the orange cluster, at least on average. This
is likely due to the presence of many counties in California and Arizona — which tend to be larger in
area — in the green cluster (see Figures 4 and 5).

Figure 12 shows the percent of heads of household who are white, by cluster. The three clusters
are well separated with respect to this variable, with the purple cluster have the greatest percentage of
white heads of household throughout, and the green cluster having the least. We also see that there is
an overall decreasing trend over time for all clusters. We note, though, that the slope of this decrease is
slightly flatter for the orange cluster than for the other two clusters. (In general, the cluster curves tend
to be nearly parallel through time for all of our covariates; this is the only real exception, and it is not
extremely pronounced.)

Figure 13 gives the mean unemployment rates over time by cluster. Covariates tended to move
smoothly and monotonically through time; unemployment rate was, not surprisingly, the lone exception.
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Figure 11: Land Area by Cluster
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Figure 12: Proportion White Heads of Household by Cluster

Throughout the timeframe analyzed, the green and orange clusters had very similar unemployment rates,
while the purple cluster was the outlier, having significantly lower rates of unemployment.

Female Male
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Figure 13: Unemployment Rate by Cluster

Figures 14 and 15 give the percentage of adults who have a bachelor’s degree and who are married,
respectively, by cluster. We can see that the former variable has an increasing trend through time, while
the latter variable has the opposite trend. In terms of education level, the green cluster lies significantly
above the other two. The purple cluster has the highest level of marriage, followed by the orange cluster,
and then the green.

These results indicate that, as we continue to further analyze the clusters using the covariates, it
is not necessary to consider each year’s covariate values; rather, it is sufficient to utilize representative
covariate values in our analyses. Further, we will continue to use the overall clusters rather than the
clusters from individual years, in order to eliminate the noise in individual year cluster covariate values
caused by the yearly movements of counties between clusters. The following sections proceed to use
regression and random forest analyses to help provide interpretations to these overall clusters in terms
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Figure 14: Education Level by Cluster

Female Male

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

0.52

0.56

0.60

P
ro

po
rt

io
n 

M
ar

rie
d

Figure 15: Marriage Level by Cluster

of the various county covariates.

4.2 Logistic Regression

As a means of analyzing cluster separation and interpretation, we fit a multinomial logistic regression
on the overall clusters using a number of county level variables. We used all of the variables described
in Section 4.1 (specifically, their 2010 values, standardized). The regression was done using the purple
cluster as the base case, so the coefficients can be interpreted as the change in the log odds of being in a
given cluster (as compared to the purple cluster) resulting from an increase of one standard deviation in
the value of that covariate, holding all other variables constant. The values of the coefficients, and their
associated standard errors and p-values are in Table 5.

There are a few notable aspects of these results. First, we notice that the coefficients for most of
the these covariates are highly significant, meaning that they highly influence the probably of a county
belonging to the various clusters. (Or at least the difference in probabilities of belonging to the purple
cluster, as opposed to one of the other clusters, though we can see that there are also significant differences
between the coefficients for the green and orange clusters.) We note that the results are broadly similar
between the male and female models; almost all coefficients are the same sign, and most are of very
similar magnitudes. The values of the coefficients are in general unsurprising, given the relationships
discussed above. We also note that most of these covariates are themselves significantly correlated.

4.3 Random Forest

In addition to the regression described in Section 4.2, we also used a random forest approach to analyze
and interpret the three clusters of counties. A random forest is an ensemble tree method introduced
by Breiman (2001) which performs classification (or regression) by creating trees from randomly chosen
observations and randomly chosen subsets of predictor variables. Methods using this type of bootstrap
aggregation (or “bagging”) have many benefits, including variance reduction and minimizing the chances
of overfitting models (Breiman, 1996). We utilized the randomForest package in R (Liaw and Wiener,
2002) for this analysis.
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Male Model Female Model
Estimate Std. Error P-Value Estimate Std. Error P-Value

Intercept (Green Cluster) 0.8059 0.0912 ∗ ∗ ∗ 1.0329 0.0713 ∗ ∗ ∗
Intercept (Orange Cluster) 1.8219 0.0842 ∗ ∗ ∗ 0.7037 0.0778 ∗ ∗ ∗
Bachelor’s (Green Cluster) 1.0383 0.1011 ∗ ∗ ∗ 1.1148 0.0925 ∗ ∗ ∗
Bachelor’s (Orange Cluster) 0.0131 0.0953 0.8910 -0.0284 0.0991 0.7741
Married (Green Cluster) -0.6059 0.1052 ∗ ∗ ∗ -0.6255 0.0882 ∗ ∗ ∗
Married (Orange Cluster) -0.7471 0.0955 ∗ ∗ ∗ -0.2686 0.0867 0.0020

Household Size (Green Cluster) 1.1458 0.0969 ∗ ∗ ∗ 1.1087 0.0817 ∗ ∗ ∗
Household Size (Orange Cluster) 0.8752 0.0873 ∗ ∗ ∗ 0.7397 0.0793 ∗ ∗ ∗
Unemployment (Green Cluster) 0.8947 0.0913 ∗ ∗ ∗ 0.9056 0.0763 ∗ ∗ ∗
Unemployment (Orange Cluster) 0.6437 0.0780 ∗ ∗ ∗ 0.6477 0.0731 ∗ ∗ ∗

White (Green Cluster) 0.3995 0.1070 0.0002 0.7546 0.0864 ∗ ∗ ∗
White (Orange Cluster) 0.6049 0.0946 ∗ ∗ ∗ 0.5246 0.0825 ∗ ∗ ∗

Land Area (Green Cluster) -0.0861 0.0593 0.1464 -0.0513 0.0527 0.3302
Land Area (Orange Cluster) -0.2127 0.0556 0.0001 -0.1996 0.0628 0.0015
Pop. Density (Green Cluster) 0.8043 0.5345 0.1324 0.7919 0.4633 0.0874
Pop. Density (Orange Cluster) -0.2457 0.5471 0.6533 0.0021 0.5421 0.9969

Table 5: Coefficients for Male and Female Multinomial Regression Models. Entries marked ∗ ∗ ∗ indicate
p-values less than 10−8.

We made standard choices for the tuning parameters; with 7 predictors (the same ones as were used
in Section 4.2), we randomly selected ⌊

√
7⌋ = 2 of them to try at each node (Bernard et al., 2009). We

used 63.2% of the 3007 observations (counties) for each subsample. We used 500 trees, and the errors
were converging well within this time frame in all cases.

For both the male and female models, the random forest did very well at classifying the counties into
their actual clusters. The confusion matrices are given in Table 6 for the counties, based on their out of
bag samples.

Table 6: Confusion Matrices for Male and Female Random Forest County Classifier Models

(a) Male

Predicted Error
RateGreen Orange Purple

Green 682 84 0 0.1097
Actual Orange 56 1705 36 0.0512

Purple 0 87 357 0.1959

(b) Female

Predicted Error
RateGreen Orange Purple

Green 1236 110 1 0.0824
Actual Orange 99 850 75 0.1699

Purple 1 87 548 0.1384

The overall misclassification rates were 8.8% and 12.4% for the male and female models, respectively.
We note again that for both models, these results indicate that the orange cluster was an intermediate
cluster between the green and purple clusters. That is, there was some misclassification between the green
and orange clusters, and between the orange and purple clusters, but virtually none between the green
and purple clusters. The one county from the green cluster in the female model that was misclassified as
purple was Aroostook County, ME, an unusually large county on the Canadian border; the one county
from the purple cluster in the female model to be misclassified as green was Poquoson, an independent
city with a small land area, located on the Virginia Peninsula. Overall, 72.2% of counties were predicted
to be in the same cluster for the male and female models, as compared to the actual value of 73.8%.
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The random forest model also allows us to consider the relative importance of the various predictors.
In particular, for each predictor in both models, we calculated the mean decrease in out of bag prediction
accuracy when permuting each predictor, while leaving the other predictors unchanged. Figure 16 shows
a measure of the importance of the various predictors in the random forest algorithm.
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Figure 16: Variable Importance Plot for Random Forest Model

We can see again that the results are very similar for the male and female models. We note that the
populations density is by far the most important predictor, with land area being a distant second, and
all other predictors far less important. This lends further weight to the notion that the clusters largely
differ along urban-rural lines.

4.4 Interpreting Model Results

Combining the information from the clustering results of the mortality curves, as seen in Figure 6, as
well as the plots and analysis from Sections 4.1 through 4.3, table 7 offers a succinct summary of the
differences between these clusters, both in the curves themselves as well as the observed differences in
characteristics of the specific counties.

Characteristic Green Orange Purple

Mortality (Age 40 and under) Low Medium High
Mortality (Age 40 and older) Slightly lower than orange High Slightly lower than orange
Population Density High Low Low
Land Area Medium Low High
White Population Lowest Medium Highest
Unemployment Rate Similar to orange Similar to green Lower
Bachelor’s Degrees High Similar to purple Similar to orange
Marriage Rates Lowest Medium Highest

Table 7: Characteristics of Orange, Green, and Purple Groups by mortality curve structure and demographic
information.

These groupings are going to be more complicated than these covariates can properly address, but
there are still several insights that can be made.

• The green group has the highest population density, suggesting a more urban area, whereas the
purple and orange groups had lower population densities suggesting more rural areas
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• The purple and orange groups have higher percentage of whites and higher marriage rates, again
suggesting more rural areas, but the purple group was higher in both categories than the orange,
providing some distinction between the two groups.

• The purple group has low education rates and low unemployment rates, perhaps suggesting a more
prominent blue collar work force.

• Even though the green and purple groups have similar mortality for individuals over 60, they are
not similar in any other demographic feature.

5 Conclusion

Understanding mortality patterns in the United States is a crucial step in informing policy makers in
related fields, such as healthcare, social services, and insurance groups. Finding the underlying behaviors,
drivers, and trends of mortality in different regions of the country is one step towards this understanding.

We adopted the approach of characterizing counties based on the shape of their overall and annual
mortality curves, which we did by representing them using spline regression coefficients. We found that
characterizing counties in this way allowed us to discover fairly nuanced trends present in mortality data.
We found that there are three primary and fairly distinct patterns that mortality tends to follow in
the continental United States; moreover, the three patterns varied not only in their overall mortality
level, but also in the shapes of their curves, with respect to age. In addition, we found that, in at least
one sense, these three overarching patterns are better at predicting the mortality of a county than even
nearby counties in the same state, which may exhibit dissimilar behavior. We gained predictive power by
simplifying and using fewer curves, especially with respect to the more rural counties. This streamlined
approach offers researchers and policy makers a powerful tool to navigate and understand mortality in
the United States more effectively.

We also found that our clusters could be interpreted in terms of various covariates of their constituent
counties. Beyond the obvious urban-rural divide, the clusters consistently varied in terms of education,
race, marriage level, and even unemployment; the patterns we found remained fairly constant through
time. In addition, the covariates were highly predictive of cluster identity, with the population density
being by far the most important predictor.

A few directions that future research could be taken in from this point emerge. No spatial information
was used in our modelling process at any point; it is possible that integrating a spatial correlation
structure into our framework could yield further insight into geographical variations in mortality patterns,
and could provide clarity on the regional disparities that appeared without it. Similarly, the random
yearly effects were modelled without any temporal correlation; adding this into the modelling procedure
could add a more intuitive change from year to year in the patterns of mortality. More covariates could
also potentially lend further insights as to the nature of the clusters. Finally, exploring the causes of
death, and in particular how they vary by cluster could provide valuable information regarding the
reasons for the differences in the shapes of the cluster mortality curves.
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Appendix A County Merges

Merge # State
Original County Merged Into County

FIPS County Name FIPS County Name

1 AL 01011 Bullock County 01101 Montgomery County
2 AR 05037 Cross County 05035 Crittenden County
3 CA 06003 Alpine County 06017 El Dorado County
4 CO 08049 Grand County 08069 Larimer County
5 CO 08053 Hinsdale County 08067 La Plata County

19



6 CO 08057 Jackson County 08069 Larimer County
7 CO 08079 Mineral County 08007 Archuleta County
8 CO 08093 Park County 08059 Jefferson County
9 CO 08111 San Juan County 08067 La Plata County
10 GA 13007 Baker County 13095 Dougherty County
11 GA 13035 Butts County 13151 Henry County
12 GA 13037 Calhoun County 13095 Dougherty County
13 GA 13053 Chattahoochee County 13215 Muscogee County
14 GA 13181 Lincoln County 13073 Columbia County
15 GA 13271 Telfair County 13069 Coffee County
16 GA 13307 Webster County 13261 Sumter County
17 ID 16025 Camas County 16039 Elmore County
18 ID 16033 Clark County 16051 Jefferson County
19 IL 17069 Hardin County 17165 Saline County
20 KS 20081 Haskell County 20055 Finney County
21 KY 21005 Anderson County 21073 Franklin County
22 KY 21063 Elliott County 21043 Carter County
23 KY 21105 Hickman County 21083 Graves County
24 KY 21129 Lee County 21065 Estill County
25 KY 21165 Menifee County 21173 Montgomery County
26 KY 21197 Powell County 21049 Clark County
27 KY 21237 Wolfe County 21175 Morgan County
28 LA 22035 East Carroll Parish 22083 Richland Parish
29 LA 22091 St. Helena Parish 22033 East Baton Rouge Parish
30 LA 22107 Tensas Parish 22041 Franklin Parish
31 MS 28023 Clarke County 28075 Lauderdale County
32 MS 28055 Issaquena County 28151 Washington County
33 MS 28063 Jefferson County 28085 Lincoln County
34 MS 28069 Kemper County 28075 Lauderdale County
35 MS 28097 Montgomery County 28043 Grenada County
36 MS 28163 Yazoo County 28049 Hinds County
37 MT 30007 Broadwater County 30031 Gallatin County
38 MT 30025 Fallon County 30017 Custer County
39 MT 30055 McCone County 30085 Roosevelt County
40 MT 30069 Petroleum County 30027 Fergus County
41 MT 30107 Wheatland County 30027 Fergus County
42 MT 30109 Wibaux County 30083 Richland County
43 NE 31005 Arthur County 31101 Keith County
44 NE 31009 Blaine County 31041 Custer County
45 NE 31057 Dundy County 31029 Chase County
46 NE 31075 Grant County 31031 Cherry County
47 NE 31085 Hayes County 31111 Lincoln County
48 NE 31105 Kimball County 31033 Cheyenne County
49 NE 31113 Logan County 31111 Lincoln County
50 NE 31115 Loup County 31041 Custer County
51 NE 31117 McPherson County 31111 Lincoln County
52 NE 31171 Thomas County 31031 Cherry County
53 NV 32009 Esmeralda County 32023 Nye County
54 NV 32011 Eureka County 32007 Elko County
55 NV 32015 Lander County 32007 Elko County
56 NV 32017 Lincoln County 32003 Clark County
57 NV 32021 Mineral County 32019 Lyon County
58 NV 32027 Pershing County 32031 Washoe County
59 NV 32029 Storey County 32031 Washoe County
60 NM 35011 De Baca County 35005 Chaves County
61 NM 35033 Mora County 35049 Santa Fe County
62 NC 37095 Hyde County 37013 Beaufort County
63 NC 37103 Jones County 37133 Onslow County
64 NC 37177 Tyrrell County 37055 Dare County
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65 ND 38007 Billings County 38089 Stark County
66 OK 40057 Harmon County 40065 Jackson County
67 SD 46017 Buffalo County 46015 Brule County
68 SD 46041 Dewey County 46129 Walworth County
69 SD 46063 Harding County 46019 Butte County
70 SD 46075 Jones County 46085 Lyman County
71 SD 46102 Oglala Lakota County 46103 Pennington County
72 SD 46113 Shannon County 46102 Oglala Lakota County
73 SD 46137 Ziebach County 46093 Meade County
74 TN 47027 Clay County 47111 Macon County
75 TX 48033 Borden County 48227 Howard County
76 TX 48075 Childress County 48197 Hardeman County
77 TX 48087 Collingsworth County 48483 Wheeler County
78 TX 48105 Crockett County 48465 Val Verde County
79 TX 48137 Edwards County 48265 Kerr County
80 TX 48173 Glasscock County 48329 Midland County
81 TX 48229 Hudspeth County 48141 El Paso County
82 TX 48235 Irion County 48451 Tom Green County
83 TX 48243 Jeff Davis County 48371 Pecos County
84 TX 48259 Kendall County 48029 Bexar County
85 TX 48261 Kenedy County 48215 Hidalgo County
86 TX 48267 Kimble County 48265 Kerr County
87 TX 48269 King County 48207 Haskell County
88 TX 48271 Kinney County 48323 Maverick County
89 TX 48283 La Salle County 48479 Webb County
90 TX 48301 Loving County 48389 Reeves County
91 TX 48311 McMullen County 48013 Atascosa County
92 TX 48369 Parmer County 48117 Deaf Smith County
93 TX 48383 Reagan County 48451 Tom Green County
94 TX 48431 Sterling County 48451 Tom Green County
95 TX 48443 Terrell County 48465 Val Verde County
96 TX 48507 Zavala County 48323 Maverick County
97 UT 49009 Daggett County 49047 Uintah County
98 UT 49033 Rich County 49057 Weber County
99 VA 51045 Craig County 51121 Montgomery County
100 VA 51515 Bedford City 51019 Bedford County
101 VA 51720 Norton City 51195 Wise County
102 WY 56035 Sublette County 56037 Sweetwater County

Table 8: The collection of counties which were merged together, with the counties that were
merged into others being on the left, and the counties which they were merged into being on the
right.
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Figure 17: County Merges. Colored counties were absorbed into the cross-hatched counties of the same
color.
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