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Abstract 

Hurricane Sandy (2012, referred to as “Current Sandy”) was among the most devastating 1 

storms to impact Connecticut’s overhead electric distribution network, resulting in over 15,000 2 

outage locations that affected more than 500,000 customers. In this paper we estimate the 3 

severity of tree-caused outages in Connecticut under future-climate Hurricane Sandy 4 

simulations, each exhibiting strengthened winds and heavier rain accumulation over the study 5 

area from large-scale thermodynamic changes in the atmosphere and track changes in the year 6 

~2100 (“Future Sandy”). Three machine learning models used five weather simulations and the 7 

ensemble mean of Current and Future Sandy, along with land use and overhead utility 8 

infrastructure data, to predict the frequency and spatial distribution of outages across the 9 

Eversource Energy-Connecticut service territory. To assess the influence of increased 10 

precipitation from Future Sandy, we compared two approaches: an outage model fit with a full 11 

set of variables accounting for both wind and precipitation, and a reduced set with only wind. 12 

Future Sandy displayed an outage increase of 42% - 64% when using the ensemble of WRF 13 

simulations fit with three different outage prediction models. This study is a proof-of-concept for 14 

the assessment of increased outage risk resulting from potential changes in tropical cyclone 15 

intensity associated with late-century thermodynamic changes driven by the IPCC AR4 A2 16 

emissions scenario.   17 

Capsule 18 

“How many more power outages would occur if a storm like Hurricane Sandy impacted the 19 

Connecticut electric distribution utility in the future, in a warmer climate scenario?” 20 
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1. Introduction 21 

Hurricane Sandy (“Sandy”) was among the three major storms that affected Connecticut 22 

in the past decade (alongside Tropical Storm Irene and the October 2011 Nor’easter). Though 23 

technically classified as a post-tropical cyclone when it made landfall (Blake et al. 2012), Sandy 24 

was impactful to Connecticut’s largest electric utility, The Connecticut Light & Power Company, 25 

doing business as Eversource Energy (“Eversource”). At the peak of the restoration over 500,000 26 

customers were affected, with some customers without power for nine days. In addition, more 27 

than 15,000 outages were repaired by a workforce six times as large as Eversource’s normal 28 

operating workforce (Caron et al. 2013). Figure 1 shows the spatial distribution of outages across 29 

the Eversource service territory. Most of the outages were concentrated in Fairfield County 30 

(southwestern Connecticut), where substantial overhead electric distribution infrastructure and 31 

population is present. Although storm surge was extensive during Sandy (Fanelli et al. 2013), the 32 

majority of outages in the Eversource service territory were caused by wind and trees affecting 33 

overhead lines (Personal Communication, Thomas Layton, Eversource Energy, 2015). 34 

Weather is found to be responsible for nearly 44% of power outages in the United States 35 

(Campbell 2013), with hurricanes and tropical storms affecting an average of 782,695 customers 36 

per event (Hines et al. 2008). The annual cost of power outages (in 2012 USD) has been 37 

estimated between $28 billion to as much as $209 billion, with annual weather-related outages 38 

estimated to cost between $25 billion to $70 billion (Abraham et al. 2013). In addition to impacts 39 

of the economy, utilities can also incur direct costs from tens to hundreds of millions of dollars 40 

for labor and equipment due to the storm (Northeast Utilities 2013).  41 

Given that Sandy was particularly impactful for utilities in the mid-Atlantic and New 42 

England (Henry and Ramirez-Marquez 2016), in this paper, we present a proof-of-concept for 43 
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assessing the impacts of Sandy within a future climate scenario as it pertains to overhead electric 44 

distribution networks (“distribution networks”). A case study or storyline approach is consistent 45 

with the pseudo-global warming (PGW) approach taken here as a viable means to evaluate the 46 

impacts of climate warming on an observed weather event (Schär et al. 1996; Trenberth et al. 47 

2015; Shepherd 2016). The present study complements existing long-term hurricane planning 48 

efforts in the United States and answers the following question: how many more outages would 49 

occur if Hurricane Sandy impacted Connecticut in the future, forced by a different large scale 50 

climate scenario? As noted by Staid et al. (2014), there is less consensus about whether the 51 

frequency of tropical cyclones will increase (Emanuel 2005) or decrease (Emanuel et al. 2008; 52 

Knutson et al. 2010). Nevertheless, there is consensus that the strongest tropical cyclones will 53 

strengthen to some degree (Pielke Jr. 2007; Knutson et al. 2010). Yates et al. (2014) examined 54 

the potential of substations being flooded under Future Sandy scenarios, and found that coastal 55 

flooding in Long Island, NY (close proximity to Connecticut) could nearly double in some areas. 56 

This study is facilitated by the recent work of Lackmann (2015) who investigated 57 

Hurricane Sandy track scenarios under current (“Current Sandy”), future (~2100, “Future 58 

Sandy”) and past climate (~1890, “Past Sandy”) thermodynamic and sea surface conditions. 59 

Lackmann (2015) found that while past Sandy tracks are indistinguishable from the Current 60 

Sandy simulations, Future Sandy scenarios appear to be stronger and shifted further north 61 

towards New England. See Lackmann (2015) for plots of sea-level pressure; lower sea-level 62 

pressure is consistent with stronger storm-centric winds. While the Lackmann (2015) study has 63 

caveats, including whether or not Sandy would form under future conditions, the goal of his 64 

study was to isolate the influence of changes in the large-scale thermodynamic environment on 65 

the intensity and track of a system like Sandy.  66 
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Using Lackmann’s technique (2015), we demonstrate a case study of how potential 67 

storm, a hypothetical future Hurricane Sandy, might affect the electrical grid in Connecticut. 68 

Generalized conclusions about how future tropical cyclones can affect the distribution network 69 

requires examination of many events, featuring a variety of tracks and intensities. Nevertheless, 70 

the added value of the presented methodology is that it can be implemented when data for future 71 

tropical cyclones becomes available. In order to assess hypothetical future changes in overhead 72 

electric distribution grid outages based on simulation of a single storm event, it is necessary to 73 

recognize that impact changes will be a function of (i) changes in the intensity and size of the 74 

storm itself, and (ii) changes in the track of the storm. This study combines these two aspects 75 

through Lackmann’s (2015) simulations, which we believe provides a framework for emergency 76 

managers to evaluate the impacts of climate data on infrastructure networks they manage.  77 

The paper is structured as follows: Section 2 discusses the weather simulation modeling 78 

framework, and a comparison of the Current and Future Sandy storms; Section 3 provides details 79 

on the outage prediction modeling, including an overview of the nonparametric models and our 80 

methodology; Section 4 contains the results and a discussion on how track and severity 81 

influenced the occurrence of power outages, as well as the limitations of the study; Section 5 82 

contains major findings and future research directions. 83 

2. Weather Data 84 

2.1 Background 85 

Within the IPCC Fourth Assessment Report (AR4) one can find several future emissions 86 

scenarios and the associated impact on global average temperature and sea level rise; these 87 

scenarios include keeping emissions at constant levels from the year 2000, and subsequent 88 



6 
 

scenarios with increased emissions. In our study, we utilized the A2 emissions scenario which 89 

describes a heterogeneous world with increasing population and carbon emissions through the 90 

year 2100 (Nakicenovic and Swart 2000).  It features the second-highest emission scenario of the 91 

scenarios used at that time, loosely corresponding to the RCP 8.5 scenario in the IPCC Fifth 92 

Assessment Report (AR5).  93 

For the work presented here we relied on the Weather Research and Forecasting (WRF) 94 

model (Skamarock et al. 2008) simulations reported in Lackmann (2015). Two different five-95 

member ensemble simulation sets of Sandy were used, one for the current and one for the future 96 

climate scenario. The model simulations included three gridded domains with 54, 18 and 6-km 97 

horizontal grid spacing using one-way nesting for the two inner grids. From the 17 members 98 

described by Lackmann (2015), five were selected to supply the outage prediction model input. 99 

The WRF members were selected based on the availability of the 6-km domain and the 100 

variations in the physical parameterization schemes. To achieve a sample of available WRF 101 

configurations, the variations included cumulus parameterization, microphysics, and planetary 102 

boundary layer schemes. A summary of the variations in the physical parameterizations for each 103 

WRF ensemble member is provided in Table 1 herein and in Lackmann (2015), and the 6-km 104 

domain is displayed in Figure 2a. 105 

The initial and boundary conditions for the Current Sandy ensemble set were obtained from 106 

the European Center for Medium Range Weather Forecasting (ECMWF) interim reanalysis (Dee 107 

et al. 2011), with an approximate spatial grid of 0.7 deg. The pseudo-global warming (PGW) 108 

procedure used to generate future simulations of Sandy was described in detail by Lackmann 109 

(2015), and here we describe the essential aspects.  Thermodynamic changes between the 1990s 110 

and 2090s were computed using a subset of general circulation model (GCM) projections from 111 
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the CMIP3 project (Meehl et al. 2007) for the A2 emissions scenario. The GCM-based 112 

temperature change fields were applied to initial and lateral boundary conditions as well as to 113 

lower boundaries (sea-surface and soil temperatures) in the original ensemble.  At constant 114 

relative humidity, warming was associated with an increase in specific humidity. A 115 

hydrostatically balanced geopotential field was then computed based on the modified virtual 116 

temperature. The digital filter initialization (DFI) procedure in WRF was used to ensure balance 117 

between the wind and mass fields in the model initial conditions. Thus, the future simulations 118 

essentially answer the question: "If the synoptic weather pattern preceding Sandy were to take 119 

place in a warmer, moister tropospheric environment, how would the track and intensity of the 120 

system change?"  121 

The authors have much experience using gridded, numerical weather prediction (NWP) 122 

model outputs for predicting storm-related power outages (Wanik et al. 2015; He et al. 2016; 123 

Wanik et al. 2017). Similar to our previous work, the WRF simulations were processed into a set 124 

of parameters that serve as input to the outage model. Specifically, within the simulated hours 125 

enclosing the storm period across the study area, wind and precipitation variables were post-126 

processed to summarize the storm temporal evolution. Wind speed at 10 meter height, 127 

precipitation accumulation, and surface gust (see Wanik et al. 2015 for computation) were 128 

reduced into the storm maxima and durations exceeding wind thresholds at each grid point 129 

within the area covering the Eversource service territory in Connecticut (see Table 2; a detailed 130 

post-process description is given by Wanik et al. 2015). 131 

2.2 Evaluation of Current Sandy WRF Simulations 132 

To evaluate the consistency of the Current Sandy runs, we compared the simulated wind 133 

speed and precipitation to available observations. We used wind speed observations from airport 134 
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(METAR) stations provided by the National Centers for Environmental Prediction (NCEP) ADP 135 

Global Upper Air and Surface Weather Observations (National Centers for Environmental 136 

Prediction et al. 1997) and precipitation from the NCEP Stage IV analysis data (radar and 137 

gauges; (Lin and Mitchell 2005). The statistical error metrics are listed in the Appendix.  138 

We present a comparison of model-simulated temperature from the Current Sandy 139 

CNTRL simulation valid 18 UTC 28 October 2012, and the closely corresponding actual 140 

temperature as shown by a GOES-13 IR image at from 18:15 UTC 28 October 2012. The 141 

comparison demonstrates that the CNTRL simulation captured the asymmetrical structure of 142 

Current Sandy, and this builds confidence in the accuracy of the WRF simulations we use. The 143 

time series of 10-m wind speed (Figure 3) revealed a temporal bias, but overall the WRF model 144 

was able to depict the highest wind speeds across all simulations. The wind speed RMSE varied 145 

between 2.6 – 4.5 m s-1 and the mean bias (MB) between 0.01 – 3.2 m s-1, depending on station 146 

and WRF simulation (Table 3).The model predicted precipitation exhibited low bias and errors 147 

compared to Stage-IV radar-gage data for the gridded domain over Connecticut for all WRF 148 

simulations (Table 3). The RMSE varied between 1.94 – 3.48 mm (2.62 mm for the ensemble 149 

mean) and the MB between 0.53-0.83 mm (0.69 mm for the ensemble mean). Spatial distribution 150 

and magnitude of the predicted accumulated precipitation agreed with the Stage IV data (Figure 151 

4) in that all members depicted high accumulation at the southwest region of the domain, which 152 

was left of Sandy’s landfall. Accumulated precipitation at the northeastern part of the domain 153 

exhibited the same spatial pattern and magnitude as shown in the Stage IV plot. Precipitation is 154 

believed to contribute to power outages by wetting the soil and allowing for easier uprooting of 155 

trees (Foster 1988; McRoberts et al. 2017). 156 
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2.3 Comparison between Current and Future Sandy Simulations 157 

Changes in simulated future storm impacts in Connecticut may be attributable both to the 158 

more northward track and to the lower minimum sea level pressure of Future Sandy. The cause 159 

of Sandy’s more northward future track was discussed in Lackmann (2015) and is also consistent 160 

with the simulations of Yates et al. (2014).  Increased tropical cyclone intensity with warming 161 

has been analyzed by Hill and Lackmann (2011) and others, and can be interpreted as the result 162 

of increased condensational heating. In Section 2, we evaluate how the change in track drives the 163 

change in resulting wind and precipitation intensity across the Eversource service territory. In 164 

later sections, we will incorporate lessons learned about the consequence of each simulations’ 165 

track into the results of the Outage Prediction Modeling. 166 

2.3.1 Storm Track Comparison 167 

The “best track” (thick, dashed black line on Figure 5), as defined by the National 168 

Hurricane Center (NHC), is a smoothed representation of the tropical cyclone’s location and 169 

intensity (e.g., latitude, longitude, maximum sustained surface winds, and minimum sea-level 170 

pressure at 6-hourly intervals). The simulated storm tracks of Current Sandy agreed with the 171 

NHC best track, while the simulated Future Sandy tracks deviated towards the northeast rather 172 

than the Mid-Atlantic States, with the Future Sandy center passing considerably closer to the 173 

state of Connecticut. The ENS simulation made landfall closest to the NHC track compared to 174 

the other five WRF simulations in Current Sandy. We have confidence in the representativeness 175 

of the Sandy WRF runs from Lackmann (2015) because they accurately represented Sandy's 176 

track and intensity in the current climate, and they capture the asymmetry of the cloud and 177 

precipitation shield (Figures 2 and 4). See Table 1 for a list of all evaluated WRF model 178 

simulations. 179 
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All tracks except the NOTCFLX simulation made landfall below the NHC track in 180 

Current Sandy (Figures 4, 5). The NOTCFLX simulation made landfall farther northeast in both 181 

Current and Future Sandy, and the CNTRL simulation had the most southerly track of all 182 

members in Current Sandy. The GODDARD, MORRIS and WDM6 tracks were all very similar 183 

in Current Sandy, while the GODDARD, CNTRL and ENS tracks were very similar for Future 184 

Sandy. The MORRIS and NOTCFLX were the only simulations that had storm centers pass over 185 

Connecticut in Future Sandy. The GODDARD, CNTRL and ENS simulations had Future Sandy 186 

tracks that made landfall on Long Island, NY, and the WDM6 simulation made landfall in New 187 

Jersey.  188 

2.3.2 Storm Magnitude Discussion 189 

We evaluated the change in wind and precipitation magnitude by creating cumulative 190 

distribution function (CDF) plots of total accumulated precipitation (Figure 6), maximum gust 191 

(Figure 7), and maximum wind at 10 m (Figure 8) for Current and Future Sandy. Each CDF plot 192 

shows the distribution of the 2-km grid cells for the variable of interest strictly within the 193 

Eversource service territory. The shift to the right of Future Sandy in each plot relative to 194 

Current Sandy indicates an increase in the magnitude of wind and precipitation variables.  195 

The GODDARD simulation shows that the maximum gust and wind at 10 m in some of 196 

the upper percentiles were decreased in Future Sandy relative to Current Sandy scenarios 197 

(Figures 7 -8). The GODDARD simulation exhibited very similar distributions of maximum 198 

wind at 10-m between Current and Future Sandy. Comparatively, the WDM6, CNTRL and ENS 199 

simulations had greater separation between the Current and Future Sandy distributions. The 200 

increase in the cumulative distributions of total precipitation, gust, and 10-m wind speed between 201 

Current and Future Sandy indicate that Future Sandy was more intense in most simulations. 202 
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Table 4 provides the average for each of the distributions in Figures 6 – 8. On average, the 203 

individual model maximum gust increased 3% - 10%, maximum 10-m wind speeds increased 6% 204 

- 13%, and total precipitation increased 60% - 187% when changing from Current to Future 205 

scenario in the Eversource service territory. In comparison, the ensemble mean increase of 206 

maximum 10 m wind speed (6%) and gust (4%) was lower relative to the individual ensemble 207 

members, and more similar to values from the GODDARD simulation.  208 

Spatial distribution of changes in wind and precipitation variables show that the majority 209 

of WRF simulations exhibit an increase in magnitude of the evaluated weather variables across 210 

most of the Eversource service territory (Figure 9). Specifically, for each 2-km grid cell, we 211 

subtracted the Current Sandy value from the Future Sandy value, such that positive values on the 212 

map indicate an increase in magnitude and negative values indicate a decrease. The increase in 213 

the spatial distribution of total precipitation was mostly concentrated in southwest and central 214 

Connecticut, while the changes in gust and 10 m wind speed distribution varied depending on the 215 

simulation. Given that the tracks shifted northward towards Connecticut, we initially expected all 216 

variables to increase in southwest Connecticut, but this did not occur. While precipitation 217 

increased heavily in southwestern Connecticut, the majority of increased gust and wind at 10-m 218 

actually occurred over eastern Connecticut. The NOTCFLX and WDM6 simulations showed the 219 

greatest increases in total accumulated precipitation, up to 200 and 300 mm per grid cell in 220 

southwestern Connecticut. The WDM6 simulation was the most southerly of the Future Sandy 221 

tracks evaluated, and wind at 10-m height and gust were increased in eastern Connecticut while 222 

there were decreases in western Connecticut. Although each WRF simulation is a hypothetical 223 

scenario, each should be treated as equally plausible as each accurately captured the Current 224 

Sandy track (Figure 4), and wind (Figure 3) and precipitation magnitude (Figure 5). 225 
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3. Outage Prediction Model (OPM) 226 

3.1 Background 227 

There is history of research in the field of hurricane outage modeling (e.g., predicting 228 

locations needing repair), outage monitoring (e.g., detecting locations with power outages), and 229 

outage duration modeling (e.g., estimating time until power is restored) for electric distribution 230 

networks. Early research leveraged parametric models, such as generalized linear models (Li et 231 

al. 2010) and generalized linear mixed models (Guikema and Davidson 2006; Liu et al. 2008), 232 

and later researchers explored probabilistic methods (Mensah and Duenas-Osorio 2014) and non-233 

parametric methods, including classification and regression trees (Quiring et al. 2011; Wanik et 234 

al. 2015), neural networks (Cole et al. 2017), Bayesian additive regression trees ( Nateghi et al. 235 

2011; He et al. 2016) and random forest (Nateghi et al. 2014; Wanik et al. 2017). Beyond 236 

building models for specific utilities ( Nateghi et al. 2014; Wanik et al. 2015; He et al. 2016), 237 

outage models have been re-calibrated with publicly available data such that the models can be 238 

generalized to other geographic regions (Guikema et al. 2014). Other recent research has 239 

investigated how tropical cyclone risk would affect customer outages under different climate 240 

change scenarios (Staid et al. 2014).  241 

This study is an extension of the outage prediction system previously created for Eversource 242 

(Wanik et al. 2015; He et al. 2016)  to predict outages associated with synoptic scale weather 243 

systems. The response variable in both models was the count of outages per 2-km grid cell, 244 

defined as locations that require manual intervention to restore power. Given that some outage 245 

records were missing geographic coordinates (e.g., latitude and longitude), we used 15,251 of the 246 

16,460 recorded outages from Current Sandy for modeling. The outage prediction modeling 247 

framework from the referenced works consisted of multiple machine learning models that used 248 
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atmospheric conditions, infrastructure, and land use surrounding the overhead power lines to 249 

predict outages for upcoming weather events (Figure 10). Electric grid infrastructure was 250 

represented by the counts of isolating devices (i.e., transformers, switches, reclosers, and fuses) 251 

per 2-km grid cell. In this paper, land use and infrastructure variables were aggregated on the 252 

same 2-km grid by which outages were aggregated. Our research group previously demonstrated 253 

how including land use and infrastructure data contributed to improved spatial accuracy of 254 

outage predictions (Wanik et al., 2015), how results can be improved by including an indicator 255 

for tree-leaf condition (He et al., 2016), and how different machine learning models yielded more 256 

accurate point estimates and predictive intervals depending on the unit of aggregation (i.e., grid 257 

cells, towns, and service territories) (He et al., 2016). Key differences between the data used in 258 

this paper and the Wanik et al. (2015) and He et al. (2016) papers are (1) the use of different 259 

storms to train and validate the model, (2) the grid spacing of weather simulation data, (3) there 260 

is no tree-leaf condition indicator in this study as we assume the storm will have the same tree-261 

leaf condition in Current and Future Sandy. 262 

For this study, the infrastructure and land use are static variables, whereas the atmospheric 263 

conditions were obtained using numerical weather prediction (NWP) simulations. Atmospheric 264 

variables from each WRF simulation were then used as inputs for three machine learning models 265 

(see Section 3.2). In addition to the five individual WRF simulations, the ensemble mean of the 266 

five WRF simulations was used as input for the outage models. The atmospheric variables used 267 

for outage modeling were based on the 6-km nested domain of the WRF grid. In this study, we 268 

used the same 2-km aggregated land use and infrastructure data as in Wanik et al. (2015) and 269 

joined these data to the centroid of the nearest 6-km centroid of the atmospheric forcing data. A 270 

list of all data included in the outage models is presented in Table 2.  271 



14 
 

3.2 Nonparametric Models 272 

Nonparametric models have been used in the power outage modeling community 273 

(Nateghi et al. 2014; Wanik et al. 2015; He et al. 2016) because they require fewer assumptions 274 

about the underlying relationship between the explanatory variables and the response variable 275 

than parametric models. In this study we used three nonparametric, machine learning (ML) 276 

models to evaluate each of the different Sandy scenarios: Bayesian additive regression trees 277 

(BART), boosted trees (BT) and random forest (RF). The model parameters were estimated 278 

using the R packages “bartMachine” (Kapelner and Bleich 2014), “gbm” (Ridgeway 2007), and 279 

“randomForest” (Liaw and Wiener 2002), respectfully. We previously used BT and RF in Wanik 280 

et al. (2015) and BART in He et al. (2016) to predict power outages in the Eversource service 281 

territory for a wide variety of storms (i.e., blizzards, thunderstorms, and hurricanes.) 282 

The BART model is a derivation of the Bayesian classification and regression trees 283 

model (CART) that takes advantage of a back-fitting Markov chain Monte Carlo (MCMC) 284 

algorithm in generating the posterior sample of classification and regression trees (Chipman et al. 285 

2012). BART as a Bayesian model utilizes a likelihood maximization procedure that benefits 286 

from well-selected prior distributions and parallel-grown decision trees. The BT model is a 287 

decision tree-based stochastic gradient boosting algorithm that fits a decision tree on the 288 

residuals of the previous tree so that overall fit becomes the cumulative effort of many “weak 289 

learners” (Friedman 2001). The RF model uses a random subset of the explanatory variables 290 

(with replacement) to build multiple decision trees, and the average of the predictions across all 291 

decision trees is used as the final prediction. The RF model was also ideal for our study because 292 

of its robustness to outliers and full use of the candidate variables (Breiman 2001). 293 
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Each nonparametric model evaluated has advantages and disadvantages, which is a 294 

function of how each handles the input data and relates it to the response variable (Mackinnon 295 

and Glick 1999; Vapnik 1999). An advantage of nonparametric models is that they are able to 296 

nonlinearly relate the input data to the response variable, which requires no assumptions from the 297 

analyst. Another advantage of these models is that one does not need to eliminate correlated 298 

explanatory variables - the correlated variables increase the time needed to train the models, but 299 

will not detract from predictive accuracy. A general disadvantage of nonparametric models is 300 

that they may not be good at extrapolating beyond the dynamic range of the independent or 301 

explanatory variables. For this reason we have evaluated a full and reduced weather data input 302 

with the machine learning models (see Section 3.3.1) and also explored the impacts of a limited 303 

dynamic range in Section 3.3.4. Also, while it is possible to explain the method by which each 304 

nonparametric model was fit to the data, it can be difficult to interpret the actual fitted model 305 

(e.g., there is no regression equation with coefficients for inference). For example, in the case of 306 

the RF model, the final model is the average of many decision tree models, and the average of 307 

the rules from the individual trees is incomprehensible. Therefore, we will rely on variable 308 

importance (Section 4.1.1) and partial dependence plots (Section 4.1.2) to analyze how these 309 

nonparametric models fit to the data. This is key to determining whether a nonparametric model 310 

has fit on an unusual pattern within the data (known as “overfitting”.)  311 

3.3 Methods 312 

3.3.1 Full and Reduced OPM Data Inputs 313 

Increased precipitation (Figures 6 and 9) in conjunction with attempting to address ML 314 

shortcomings (Section 3.2) are the reasons for employing full and reduced OPM data inputs. The 315 

full data input included both precipitation and wind variables, while the reduced model included 316 
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only wind variables (Table 2). The combination of three machine learning models, with two data 317 

inputs (full and reduced) and six weather simulations (five WRF simulations and their calculated 318 

ensemble mean) yielded 36 scenarios each to be evaluated for Current and Future Sandy.  319 

3.3.2 Outage Prediction Model for Current Sandy 320 

We first establish that the WRF simulations could be used to predict Current Sandy 321 

outages with each of the three machine learning models. We refer to “model training” as using 322 

the tuned models as “in-sample” prediction on the Current Sandy data. The model training 323 

results were not included in this paper as they are not a true measure of model performance. 324 

Instead we present results from a leave-one-observation-out cross-validation (LOOCV) using the 325 

tuned models on Current Sandy to demonstrate their performance (we refer to this as “model 326 

validation”, “observations” are defined as 2-km grid cells). The following error metrics were 327 

calculated for each simulation and model across all grid cells: Pearson correlation (“correlation”, 328 

“r”) between actual and predicted outages per grid cell, mean absolute error (“MAE”) of 329 

predicted outages per grid cell, root-mean-square error (RMSE) of predicted outages per grid 330 

cell, and the sum of predicted outages over the service territory (to show estimation error of the 331 

predicted outages). Description of the calculation of these error metrics is provided in the 332 

Appendix. 333 

3.3.3 Outage Prediction Model for Future Sandy 334 

Once we established through model validation that the WRF simulations could predict 335 

outages for Current Sandy, we then performed an independent test to evaluate how the models 336 

would predict outages from a corresponding Future Sandy simulation. We refer to “model 337 

testing” as using our trained and validated models from Current Sandy that are used to predict 338 

Future Sandy outages. With the knowledge that some weather simulations may be inherently 339 
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biased (Section 2.3), we assumed that any bias was consistent between the Current and Future 340 

Sandy simulations and absorbed these biases into our framework (Figure 10) by fitting pairwise 341 

outage models to account for the chosen configurations (i.e., an individual Current Sandy 342 

simulation from Table 1 is used to predict the corresponding Future Sandy outages), along with 343 

the ensemble mean. 344 

In summary, the Current Sandy WRF simulation (joined with actual Current Sandy 345 

outages from Eversource) will be used for training and validated using LOOCV; and the Future 346 

Sandy simulation will be treated as an independent model test (e.g. holdout sample) of the 347 

trained model, respectively. In Section 4, we provide discussion on the validity of the predictions 348 

by examining the magnitude and distribution of predicted outages related to the input weather 349 

data. 350 

3.3.4 Proof-of-Concept Results from Our Previous Research 351 

As mentioned, in our previous work we have shown how storms of different types and 352 

magnitudes could be used to predict outages during each storm (Wanik et al. 2015; He et al. 353 

2016). However, a technique that was not previously demonstrated was the use of a single 354 

hurricane to predict outages from another hurricane. To build confidence in our methodology, we 355 

used Hurricane Irene (2011) to train the outage prediction models (using BART, BT and RF), 356 

and used the trained models with full and reduced data inputs (see Section 3.3.1) to predict 357 

outages from Hurricane Sandy (2012) as an independent holdout, and vice-versa. These storms 358 

had similar storm outage totals despite differences in track and magnitude of wind and 359 

precipitation (Figure A.1 in the Appendix); Sandy had a more extreme distribution of wind-360 

related variables, Irene had higher total accumulated precipitation over the Eversource-CT 361 

service territory. 362 
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The results from this proof-of-concept can be found in Table 5, and show that each ML 363 

model we investigated (BART, BT and RF) was able to predict the outages for each hurricane 364 

between -26% and +28% of the actual total outages for the full data input for both storms. 365 

However, using the reduced data input resulted in -25% to 2% of the actual total outages for 366 

Sandy, while Irene was overestimated 18% to 56%. 367 

In addition to using a single hurricane to predict another hurricane’s power outages, we 368 

also investigated whether an OPM trained on a large number of extratropical storms (n=76 369 

storms) along with one hurricane could be used to improve the predictions for the other 370 

hurricane. For context, an extratropical cyclone is an asymmetric cyclone that usually occurs at 371 

the mid-latitudes, due to temperature and/or humidity gradients and wind shear. Their main 372 

characteristic is the presence of frontal systems slowly rotating counterclockwise (in the 373 

Northern Hemisphere) around the cyclone center. Their impact on the territory is usually 374 

manifested with long duration winds, gusts and precipitation, and outages ranged from 20 to 375 

4,000 outages per storm (much less than the >15,000 outages in Irene and Sandy). In 376 

comparison, tropical cyclone have instead a symmetric structure, typically with an eyewall near 377 

the center, are not characterized by frontal structures. The results from this exercise were 378 

comparatively worse, with outage predictions typically underestimated by greater than 50% 379 

(Table A.1 in Appendix).  380 

Given these additional proof-of-concept results, we note the uncertainty that can arise in 381 

the Future Sandy predictions when the forecasted weather has a different range than the 382 

historical storms. As shown in Figure A.1, Sandy and Irene were more similar to each other with 383 

respect to maximum gust and wind than to the extratropical storms, much like Current and 384 

Future Sandy (Figures 7 and 8). Therefore, we will proceed assuming that Current Sandy can be 385 
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used to predict Future Sandy impacts, with the knowledge that these predictions may be 386 

underestimated given the dynamic range of the weather data input. 387 

4. Results and Discussion 388 

We will now show that although each nonparametric model was able to represent Current 389 

Sandy outage impacts for each WRF simulation (Section 4.1), there was a divergence in Future 390 

Sandy impacts owing to the non-linear response between the explanatory variables and power 391 

outages (Section 4.2). We also highlight how the inclusion of precipitation influenced outage 392 

prediction model accuracy for Current Sandy, and substantially altered the Future Sandy 393 

predictions. Note: from now on we will often refer to variable names as they appear in Table 1.  394 

4.1 Outage Predictions for Current Sandy Scenarios (Model Validation) 395 

BT and BART accurately predicted Current Sandy while the RF model tended to 396 

underestimate the outages and had poorer error metrics (Table 6). The BART and BT models had 397 

similar performance for both the full and reduced data inputs, with high correlation values 398 

between actual and predicted outages (0.85 - 0.87), low RMSE (4.58 - 4.77) and low MAE (2.38 399 

– 2.5) per 2-km grid cell. In contrast, the RF model had comparatively lower correlation (0.54 – 400 

0.8), higher RMSE (6.88-7.98) and higher MAE (3.3 – 4.07) values than the BART and BT 401 

models. Interestingly, the models calibrated on the full data input resulted in little change of 402 

MAE per grid cell (e.g., up to 1.7% improved MAE, or 3.3% worsened MAE) across all WRF 403 

simulations (Table 7).  404 

The model validation results (Table 6) show that the BT and BART models were superior 405 

at predicting Current Sandy outages across all five individual weather simulations and the 406 

ensemble mean (e.g., high correlation, low error metrics). These low LOOCV error metrics 407 
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provide confidence in the Outage Prediction Model and suggest that the Future Sandy outage 408 

predictions from these ML models will also be reliable. As previously discussed (Section 2), 409 

temporal lags between simulation and observation did not affect the outage model performance 410 

as the dependency was removed at the post-processing stage by converting the time series into 411 

variables representing the storm peak and severity (Table 2).  Additionally, it is worth noting the 412 

MAE values for the BT and BART validation were improved compared to results from our 413 

previous studies on Current Sandy (Wanik et al. 2015; He et al. 2016) and comparable to others 414 

who also conducted hurricane outage modeling studies (Han et al. 2009a; Han et al. 2009b; 415 

Nateghi et al. 2014; McRoberts et al. 2017). However, comparison to these studies should be 416 

done with caution as each study referenced uses a different storm, outage data, geographic 417 

regions, aggregations and spatial resolutions. Given that RF consistently underestimated the 418 

storm total outages for Current Sandy, we expected an underestimation of Future Sandy 419 

predictions relative to the BT and BART models which more accurately captured the storm total 420 

outages (Table 6). However, this did not occur and we will motivate the Future Sandy results 421 

(Section 4.2) by analyzing the Current Sandy variable importance and partial dependence plots in 422 

the next subsections. 423 

4.1.1 Variable Importance for Current Sandy 424 

Variable importance refers to measuring the contribution of each variable in a ML model, 425 

and each ML model’s corresponding R package had its own method for measuring variable 426 

importance. We will now provide high-level detail on the variable importance calculations for 427 

each ML model, the reader may refer to the R package documentation cited in Section 3.2 for a 428 

thorough description of how variable importance was calculated in the BART (e.g., inclusion 429 

proportion), BT (e.g. relative influence) and RF models (e.g. inclusion node purity). Generally 430 
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speaking, the higher the variable importance, the more influential a variable will be in 431 

determining the predicted response variable. In the BART model, variable importance was the 432 

inclusion proportion for any given predictor, the proportion of times that variable is chosen as a 433 

splitting rule out of all splitting rules among the posterior draws of the sum-of-trees model. The 434 

importance score for a variable in the RF model was calculated by measuring the out-of-bag 435 

forecasting accuracy that occurs from shuffling the values for a particular predictor and dropping 436 

the out-of-bag observations down each tree. In the BT model, the reduction in the loss function 437 

attributed to each variable at each split was tabulated and the sum returned, which was then 438 

summed over each boosting iteration.  439 

Though not shown here, there was moderate positive correlation between the count of 440 

assets and actual outages per grid cell during Current Sandy, and the count of assets was the most 441 

important variable across all combinations of ML model and WRF simulation evaluated. To 442 

facilitate comparison of variable importance, we computed the relative variable importance for 443 

each ML model and WRF simulation by normalizing variable importance values by the largest 444 

non-asset variable (as the assets had importance values that were generally double the next most 445 

important variable). Hence, a value of “100” means that this variable was the most important 446 

variable in the WRF simulation and ML model, and the importance of all other variables were 447 

scaled by this quantity excluding assets. 448 

The variable importance of each ML model is presented in Figure 11 for the full data 449 

input (wind and rain variables), and the values are color-coded to help the reader discern which 450 

variables were most important (e.g., darker colors represent more important variables). One will 451 

notice that BART and RF have much more coloring than BT, indicating that many more 452 

variables had an impact closer to the impact of the assets. 453 
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The BART models had high variable importance for land use variables (PercConif, 454 

PercDecid, PercDev) followed by wind and precipitation variables. Similar to BART, the RF 455 

models were influenced from a comparatively larger subset of explanatory variables than BT. In 456 

comparison, the BT model had many variables at 0, which suggests only a subset of variables 457 

were used for prediction.  458 

4.1.2 Partial Dependence for Current Sandy 459 

Partial dependence plots were created for each of the Current Sandy simulations. Each 460 

plot visualizes how an explanatory variable of interest influences the response variable after 461 

accounting for all other variables. The X axis represents the explanatory variable of interest, and 462 

the Y axis shows the predicted outages per grid cell with all other variables at their mean. Note 463 

that the Y axis will change between ML models. A positive, increasing trend on each subpanel 464 

represents increased predicted outages and vice-versa. A flat line represents no change in the 465 

predicted Y values for given X values. 466 

We present three groups of partial dependence plots that correspond to a subset of the 467 

most important variables listed in Figure 11. More specifically, Figure 12 contains partial 468 

dependence plots of geographic and land use variables, Figure 13 contains wind wind-related 469 

variables, and Figure 14 contains precipitation-related variables. Each figure is grouped by ML 470 

model, and each subpanel contains six lines which correspond to the WRF simulations (colors 471 

correspond to Figure 5). For brevity, we will focus on the most interesting observed patterns. 472 

Note that there is not the same amount of data in each section of the X-axis, and patterns 473 

observed at the extreme values of the X axis may be influenced by few data points not 474 

representative of the entire calibration data (i.e., see  “Assets” for the BART model in Figure 12).  475 
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The Assets were not only most important in each ML model and WRF simulation, they 476 

resulted in the highest predicted outages (up to 25 outages per grid cell), holding all other 477 

variables held at their means (Figure 12). Similarly, all ML models and WRF simulations 478 

predicted higher outages for increased PercDecid. The wind-related variables in Figure 13 show 479 

a trade-off between calculate mean and maximum variables across ML models - variables of the 480 

same group (i.e., wind-related) may show an increase for one variable, and may show flat lines 481 

for other correlated variables. The presence of a flat line does not necessarily indicate that the 482 

variable was not “important” (i.e., see MEANWind10m for BART, Figure 13, and the variable 483 

importance was similar to the other wind-related variables). Within the RF model for wind-484 

related variables (Figure 13), we see that most WRF simulations show a positive trend except the 485 

NOTCFLX and WDM6 simulations, which show a negative trend for MAXGust. For 486 

GODDARD and MORRIS, the MAXGust variable shows a large positive trend in BT and RF – 487 

and this agrees well with the variable importance listed in Figure 11, which confirms they are 488 

among the most important variables. The same is true for CNTRL and ENS simulations within 489 

the BT and RF models for MAXWind10m and MEANGust. The precipitation-related variables 490 

are shown in Figure 14, where most WRF simulations show a positive trend for TotPrec except 491 

for the ENS simulation. Within the BT and RF models, the TotPrec had a variable importance 492 

that was greatly less than the value of the most important wind-related variables, but the variable 493 

importance was similar to wind-related variables in the BART model. There was a mix of trends 494 

across all other ML models and WRF simulations for MAXPreRate and MEANPreRate. 495 

4.2 Outage Predictions for Future Sandy Scenarios (Model Test) 496 

Each Future Sandy WRF simulation was treated as an equally likely scenario, and each 497 

exhibited differences in the landfall location and magnitude of wind and precipitation within the 498 
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Eversource service territory (Figure 9). As previously mentioned, total precipitation increased 499 

drastically in some simulations so we compared models with full and reduced data inputs. Each 500 

Future Sandy simulation evaluated had differing predicted outage counts, but there were some 501 

consistent trends (Tables 8 and 9). The vast majority of Future Sandy scenarios evaluated show 502 

higher outages for Future Sandy, except for the following combinations: GODDARD (BT full, 503 

BT reduced, BART reduced) and MORRIS (BART full) simulations. Generally, the full model 504 

resulted in higher predicted outages than the reduced model, and these full model predictions are 505 

displayed in Figures 15 and 16 by machine learning model and simulation. Note how the change 506 

in outages were most pronounced in areas with the highest population density (Figure 1), which 507 

is inherently related to the amount of electric grid infrastructure.  508 

4.2.1 Comparison between Full and Reduced Data Inputs on Future Sandy Outages 509 

The change in Future Sandy predicted outages varied between the full and reduced data 510 

inputs depending on which WRF simulation and machine learning model was considered (Table 511 

9). The BART model predicted -30% to +31%  storm total outages for Future Sandy across the 512 

five individual WRF simulations when precipitation variables were included, while the BT 513 

model predicted -12% to +20%  of total outages, and RF predicted +11% to +53%  (Table 9). It 514 

was interesting to see that the full data input resulted in consistently increased outages over the 515 

reduced data input for the RF model (Table 9), even though the RF model had a slightly less 516 

accurate calibration by including precipitation variables (Table 7). In comparison BART and BT 517 

calibrations for Current Sandy were slightly improved (e.g., lower LOOCV error metrics) by 518 

including precipitation variables, and resulted in increased outage predictions for WDM6 and 519 

ENS, while all other WRF simulations had no discernable patterns. 520 
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Despite underestimating Current Sandy outages (Table 6), RF predicted the most outages 521 

from Future Sandy for both the arithmetic average of the five simulations (97% full; 74% 522 

reduced) and the ensemble mean (116% full; 75% reduced; Table 8). Figure 17 shows the 523 

quantile-quantile (QQ) plot relating the actual Current Sandy outages to the Future Sandy 524 

predicted outages for the full data input for all WRF simulations. Generally, RF had the highest 525 

change in outages, followed by BART and lastly BT. Decreases below the 45 degree line for the 526 

95th percentile in the QQ plot shows that ML models did not merely predict the extremely large 527 

(and rare) values from the distribution of Current Sandy outages. 528 

4.2.2 Influence of Storm Track on Future Sandy Outages 529 

Three of the six Future Sandy tracks made landfall in the center of Long Island, New 530 

York. These include the GODDARD, CNTRL and ENS simulations. The WDM6 simulation 531 

made landfall in New Jersey, farther south than all other WRF simulations. The MORRIS and 532 

NOTCFLX models made landfall in eastern Long Island, New York and the centers of these 533 

tracks made land fall over southwestern Connecticut (Figures 4 and 5). From track alone, we 534 

would have expected MORRIS and NOTCFLX to have the highest outages, and WDM6 to have 535 

the lowest outages for Future Sandy, yet this did not occur. Further, though not shown here, we 536 

found that there was little correlation between the change in latitude or longitude at which a 537 

storm made landfall and the change in predicted outages, which supports that it is wind and 538 

precipitation magnitude and not track that influences power outages.  539 

4.2.3 Influence of Storm Magnitude on Future Sandy Outages 540 

We now focus our discussion on the behavior of machine learning models that used the 541 

full data input (both wind and precipitation variables), and how they used changes in wind and 542 

precipitation magnitude to predict Future Sandy outages. To support this analysis, the reader can 543 
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check Figure 1 for a labeled map of Connecticut counties. Much of our analysis will focus on the 544 

most populated county in the territory, Fairfield County (southwest Connecticut, population of 545 

~945,000 residents), which also had the most outages of any other county in the service territory 546 

during Current Sandy (Figure 1). 547 

Qualitatively, one can compare the colors on Figure 9 (wind and precipitation magnitude 548 

changes) and Figure 16 (outage magnitude changes) to see the changes between Current and 549 

Future Sandy.  To quantify this relationship, the Spearman rank correlation coefficient (ρ) was 550 

computed between changes in wind and precipitation magnitude per grid cell and the change in 551 

predicted outages from Current Sandy to Future Sandy for the full and reduced data input (Figure 552 

18), and select results were presented for the service territory and Fairfield County (note: service 553 

territory results include grid cells from Fairfield County). Spearman’s rank correlation 554 

coefficients that are close to one have a strong positive relationship, values close to 0 have no 555 

relationship, and values close to -1 have a strong negative relationship. 556 

There were minor differences between Spearman correlations in the full and reduced data 557 

set (Figure 18). This supports that inclusion of precipitation-related variables did not 558 

substantially alter the Future Sandy outage predictions despite the increased accumulated 559 

precipitation (Tables 8 and 9). Also worth noting is that the correlations within Fairfield County 560 

were generally stronger than the entire Eversource-Connecticut service territory, which we 561 

suspect may be related to the vast amount of electric infrastructure present compared to other 562 

parts of the territory. The BART and BT models generally had weak to moderate  positive 563 

correlation between changes in wind-related variables and changes in outage magnitude for 564 

Fairfield County (up to ρ=0.63), and the Eversource service territory (up to ρ=0.38). In 565 

comparison, the RF model generally had a negative correlation for wind-related variables (except 566 
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for WDM6) and moderate positive correlation for total precipitation. This suggests that most 567 

outage changes within RF were driven by precipitation while BART and BT were driven by 568 

wind-related variables. 569 

As mentioned, the correlations listed in Figure 18 can also be verified with visual 570 

inspection between Figure 9 and 16. The decreases in gust and wind in the southwest (Fairfield 571 

County) during the CTNRL, GODDARD, MORRIS and ENS simulations appear to match the 572 

corresponding outage decreases in BART and BT, and not for the RF model. The GODDARD 573 

simulation had nearly unchanged winds in Hartford County and decreased winds in Fairfield 574 

County, which may explain why the GODDARD simulation generally had the lowest predicted 575 

outage impacts for Future Sandy across ML models. The MORRIS simulation had increased 576 

winds and gusts in central and coastal Connecticut, with unchanged or decreased gusts in the 577 

southwest and northwest. MORRIS also had a region of increased precipitation in eastern 578 

Connecticut. The BART model correspondingly had decreased outages in both southwest 579 

(Fairfield County) and eastern Connecticut (Windham County and Fairfield County), resulting in 580 

this Future Sandy simulation with the full data input having less outages than Current Sandy 581 

input (14,595 outages). Interestingly, the reduced data input for BART gave increased outages 582 

(20,735 outages), which may indicate that BART with the full data input was overfit on the 583 

precipitation data. Another example of potential overfitting on the precipitation data was the 584 

BART and BT models which predicted decreased outages in Fairfield County for the NOTCFLX 585 

simulation, despite this region having most accumulated precipitation with unchanged gusts and 586 

winds. The WDM6 simulation had lowest increases in precipitation and large increases in gust 587 

and wind across Connecticut. There was moderate positive correlation between gust and 588 

predicted outages (ρ >0.5) in Fairfield County, and weak correlations for wind. The ML models 589 
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had consistently higher outage predictions with the full data input for WDM6, even though the 590 

increases in accumulated precipitation were low compared to other WRF simulations. 591 

4.2.4 Comparison of Machine Learning Models 592 

While the BT model had excellent calibration metrics for Current Sandy, it usually gave 593 

the lowest outages for Future Sandy. However, BT had stronger correlation between changes in 594 

wind, gust, and changes in predicted outages than RF (see Section 4.2.3). We suspect the reason 595 

for divergence between BART and BT for Future Sandy was caused by the BT model being 596 

more influenced by the assets per grid cell than the weather variables; hence increases in weather 597 

variable severity across the simulations did not result in increased outages. In comparison, the 598 

RF model uses all explanatory variables in the input data while the BT and BART models only 599 

use variables that improve model accuracy (see Section 3.2 for details). For the same five 600 

weather simulations, BT had the smallest average increased outages, while RF and BART had 601 

comparatively larger increased outages (Table 8). The partial dependence plots from Current 602 

Sandy showed that increased assets per grid cell led to increased outage predictions across all 603 

ML models, but it is worth noting the dynamic range of the Y axis in the partial dependence 604 

plots for the BT model were typically much smaller than the BART and RF models, further 605 

suggesting it could have been overfit on the assets. For the sake of this paper, we treat all 606 

nonparametric models as equally valid, highlighting the model dependence of results. 607 

4.3 Limitations 608 

Changes in the severity of outages from future tropical cyclones can be caused by several 609 

factors, but here, we isolated the meteorological component. Those are: (i) the future storm was 610 

more intense, and (ii) it made landfall much closer to the study area. As mentioned earlier, we 611 

have accounted for both changes in track and intensity by making direct use of Lackmann (2015) 612 
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WRF simulations. Differentiating between those two mechanisms requires shifting the track of 613 

Current Sandy to match the future one, while keeping the same intensity. This scenario is 614 

challenging to achieve due to changes in storm-relative coastline orientation that would not allow 615 

us to simply translate future scenario model wind speeds relative to the present cyclone track 616 

moves. Therefore this scenario would require further model simulations, which is beyond the 617 

scope of the current study.  618 

Our ability to generalize these results is limited by the use of a single case and we are 619 

aware that for this particular storm, the track changed in a way that helped to potentially 620 

maximize winds and precipitation of Future Sandy across the Eversource service territory.  621 

Simulations of many cases, with various tracks and intensities, are necessary to reach more 622 

general conclusions about how future tropical cyclone impacts could change with warming.  623 

How the frequency and intensity of tropical cyclones will change with climate warming remains 624 

an area of active research in the atmospheric sciences community. While we do not believe that 625 

we have modeled the worst case scenario for utilities to prepare for, the case study presented in 626 

this paper serves as a proof-of-concept method that can be readily implemented when weather 627 

data for many additional cases of future tropical cyclones becomes available. 628 

There are many other factors that may play a role in modifying how an electrical 629 

distribution system responds to adverse weather. Utilities invest in structural and electrical 630 

hardening initiatives which may increase resilience to extreme weather events – depending on 631 

the level and type of investment, the grid may respond differently to severe weather (Kuntz et al. 632 

2002). The level of foliage (Ennos 1999; James et al. 2014), which is a function of the day a 633 

storm would hit in the future (Fahey 2016; Carter et al. 2017) would also alter the relationship 634 

between wind, trees and resultant outages. On a broader level, tree species mixes may also 635 
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change as a function of altered temperature and precipitation (Rustad et al. 2012). Further, if a 636 

utility were to alter the tree conditions such that the trees were less prone to impact through 637 

vegetation management activities, future outages may be limited (Guikema et al. 2006; Wanik et 638 

al. 2017). However, the presence of invasive species, such as Emerald ash borer (Poland and 639 

McCullough 2006), will weaken roadside trees and forests and may lead to greater outage counts 640 

in select regions. The electric distribution network typically follows population by necessity, 641 

thereby increasing the exposure of the network and contributing to potential outages by virtue of 642 

simply having more infrastructure where the system is overhead as population increases (Larsen 643 

et al. 2016). Should future population growth occur in cities (Heath 2001; Dawson 2007) rather 644 

than rural communities, infrastructure exposure and associated risk may be comparatively 645 

lowered as distribution infrastructure tends to be underground in urban areas. 646 

5. Conclusions 647 

This case study was based on a scientific question about the change in severity of power 648 

outages if a storm similar to Hurricane Sandy was to impact Connecticut in the future, taking 649 

place with warmer atmospheric conditions. We have presented a case study of how we would 650 

expect future outages to occur under different future Hurricane Sandy scenarios given end-of-651 

century atmospheric thermodynamic conditions informed by numerical weather prediction 652 

simulations from a recent published work (Lackmann 2015). We acknowledge that changes in 653 

both track and intensity affect changes in outage impacts.  We did not attempt to separate these 654 

effects as our purpose here was to provide a case study of potential power outages owing to a 655 

stronger storm and altered track induced by future climate conditions and to illustrate a technique 656 

that could be used with a more complete set of future tropical cyclone scenarios.  For example, 657 
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applying this technique to multi-season simulations of future climate scenario (or historic) 658 

hurricane tracks and severities could provide a more thorough treatment of the problem.  659 

These simulations between Current Sandy and Future Sandy were shown to increase 660 

power outages in Connecticut by an amount ranging between 42% (reduced data input) and 64% 661 

(full data input) using the ensemble mean of each atmospheric variable from the five WRF 662 

simulations to run the outage models, and 55% (reduced data input) and 64% (full data input) 663 

using the arithmetic average of the five ensemble member outage simulations (Table 8).  664 

To limit the weather-related outages, many utilities are investing in multimillion-dollar 665 

grid resilience projects to address substation flooding, vegetation management, and pole integrity 666 

improvements (Consolidated Edison 2013; Eversource Energy 2013; Public Service Enterprise 667 

Group 2016). The study did not account for electric grid hardening activities, which would likely 668 

moderate future storm impacts. Storm surge and inland flooding, while not evaluated in our 669 

model, are also be expected to contribute to increased outages in future hurricane scenarios, due 670 

to Future Sandy’s stronger winds and closer track to the Eversource service territory relative to 671 

Current Sandy generate a higher storm surge. Soil moisture may increase power outages in both 672 

drought and saturated soil conditions by making tree branches more likely to break (Meir et al. 673 

2015) or making tree roots more likely to be uprooted (James et al. 2014; Vogel 1996). Past 674 

research has explored the use of soil moisture data for improving the accuracy of hurricane 675 

outage prediction models (Han et al. 2009a; Han et al. 2009b), and were recently demonstrated to 676 

be useful for predicting outages during Hurricane Matthew (Gorder 2016). 677 

Although we have only analyzed impacts on the electric distribution network by tree-678 

caused damages, there are many other types of infrastructures that would likely be informed by 679 
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an analysis of this type (i.e., water supply, wastewater, and telecommunications). A future 680 

extension of this analysis that includes simulations of many tropical cyclones (not just Hurricane 681 

Sandy), with various tracks and intensities, will allow us to reach more general conclusions about 682 

how future tropical cyclone impacts could change in a warming climate. 683 
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Appendixes 694 

Error Metrics 695 

The statistical metrics used in the model evaluation analyses are presented below. The modelled 696 

variable (i.e., wind, precipitation, outages etc.) is represented by Y, the observed variable by X 697 

and N is the total number of data points used in the calculations. 698 

− Root Mean Square Error (RMSE):  699 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
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 700 

− Mean Bias (MB):  701 
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 702 

− Mean Absolute Error (MAE):  703 
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 704 

− Pearson Correlation (r): 705 
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Proof-of-Concept Using Prior Research Data 715 

The following plot and tables support analysis in Section 3.3.4. 716 

[Table A.1 and Figure A.1 to be placed here by AMS technical editors] 717 
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List of Figures 

Figure 1: (left) Distribution of actual outages per 2-km grid cells that cover the Eversource 

service territory during Current Sandy (2012). White areas without grid cells represent regions 

served by other utility companies. (right) Population density per census tract (source: 2000 

Census data.) Counties denoted with thick black lines and labels. 

Figure 2: (a) Map denoting the approximate location of the 54, 18 and 6 km WRF domains used 

for weather simulations. The field displayed is model-simulated brightness temperature at hour 

66 of the CNTRL simulation, valid 18 UTC 28 October 2012; with resolution corresponding to 

the grid length in each domain. (b) Corresponding GOES-13 Infrared image from 18:15 UTC 28 

October 2012, black box corresponds to 6km domain in subpanel (a), and color palettes are 

approximate but not exact. 

Figure 3: Wind speed at 10-m for the Current Sandy simulations compared to observations 

(black dots) in four Connecticut stations. Each colored line is an individual WRF simulation. 

There may be missing values in the observations at different time steps depending on the 

evaluated airport station.  

Figure 4: Accumulated precipitation from each WRF simulation ensemble member (name 

conventions correspond to Table 1), the ensemble mean of the five members (ENS), and Stage 

IV radar data (ACTUAL) which represents precipitation observations. The Current Sandy tracks 

are added in thick black lines, with Future Sandy tracks in dashed lines.  

Figure 5: (a) Current and Future Sandy storm tracks. Colored lines correspond to individual 

WRF simulations, the grey line indicates the ensemble mean track (ENS), and the dashed black 
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line represents the National Hurricane Center (NHC) “best track” for Current Sandy. (b) Zoomed 

in to highlight storm landfall location. 

Figure 6: Cumulative distributions of total accumulated precipitation for Current and Future 

Sandy simulations in the sub-region of the model domain enclosing the Eversource service 

territory. Colors correspond to WRF simulations in Figure 3. 

Figure 7: Cumulative distributions of maximum gust for Current and Future Sandy simulations 

in the sub-region of the model domain enclosing the Eversource service territory. Colors 

correspond to WRF simulations in Figure 3. 

Figure 8: Cumulative distributions of maximum wind at 10-m for Current and Future Sandy 

simulations in the sub-region of the model domain enclosing the Eversource service territory. 

Colors correspond to WRF simulations in Figure 3. 

Figure 9: Changes in select wind and precipitation magnitude  from Current to Future Sandy. 

Positive values indicate an increase in intensity during Future Sandy. 

Figure 10: Modeling framework that combines weather, land use and infrastructure into outage 

predictions for Current Sandy scenarios. Calibrated models were then applied to Future Sandy 

scenarios. 

Figure 11: Relative variable importance for the BART, BT and RF models, with full data input 

(normalized by highest value in column – does not include assets per grid cell). Darker colors 

indicate higher relative importance.  
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Figure 12: Partial dependence plots related to select geographic variables. Y axis represent 

change in predicted outages per 2-km grid cell. Colors are related to WRF simulations in Figure 

3. 

Figure 13: Partial dependence plots related to select wind variables. Y axis represent change in 

predicted outages per 2-km grid cell. Colors are related to WRF simulations in Figure 3. 

Figure 14: Partial dependence plots related to select precipitation variables. Y axis represent 

change in predicted outages per 2-km grid cell. Colors are related to WRF simulations in Figure 

3. 

Figure 15:  Distribution of predicted outages for Future Sandy by simulation and machine 

learning models for the full model forcing (wind and precipitation variables). Legend matches 

Current Sandy actual outages in Figure 1. 

Figure 16: Change in predicted outages from Current to Future Sandy for the full data input 

(positive numbers indicate an increase in Future Sandy). 

Figure 17: Quantile-quantile plot showing the increase in predicted outages per grid cells for 

Future Sandy (Y axis) compared to actual Current Sandy outages per grid cell (X axis) for 

BART, BT and RF models with the full data input. Quantiles represent the 5, 10, 20, 30, 40, 50, 

60, 70, 80, 90, and 95th percentiles. 

Figure 18: Correlation between increased outages and weather magnitude using Spearman 

correlation for Fairfield County and the Eversource Connecticut service territory for the full and 

reduced data input. Red cells indicate positive correlation, blues cells indicate negative 

correlation, and white cells indicate a lack of correlation. Difference between Spearman 
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correlations for full and reduced data input are also tabulated in right third (positive values 

indicate an improvement in the full model). 

 

Figure A.1: Comparison of CDF plots for select weather variables for 76 extratropical storms 

(occurred between 2005 and 2017), Hurricane Irene (2011), and Hurricane Sandy (2012). 
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Table 1: Configuration used in the WRF model simulations from Lackmann (2015). The convective parameterization (CP) choices 

included Kain-Fritsch (KF) and none. The microphysics choices include the WRF single-moment 6-class microphysics scheme 

(WSM6), the Goddard scheme, the WRF double-moment 6-class microphysics scheme (WDM6), and the Morrison scheme. The 

Planetary Boundary Layer (PBL) and Tropical Cyclone (TC) flux column includes use of the Yonsei University (YSU) scheme, and 

all but run NOTCFLX utilized the TC flux correction option. All simulations used vertical motion damping, 50 dry-air sigma model 

levels, and a model top at 50 hPa. All simulations have the same initialization time: 26 Oct 2012, 0000 UTC. For more detail on 

individual microphysics schemes, please refer to Skamarock et al. (2008). 

 

Simulation Grid length 
(km) CP scheme by grid Microphysics PBL/TC flux 

CNTRL 54, 18, 6 KF, KF, none WSM6 YSU/Yes 
GODDARD 54, 18, 6 KF, KF, none Goddard YSU/Yes 

MORRIS 54, 18, 6 KF, KF, none Morrison YSU/Yes 
NOTCFLX 54, 18, 6 KF, KF, none WSM6  YSU/No 

WDM6 54, 18, 6 KF, KF, none WDM6 YSU/Yes 
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Table 2: Summary of variables used in the models; variables with an asterisk have both mean and maximum values calculated (as 
described in Section 2). The full and reduced models are as discussed in Section 3.3.1. 

 
Variable Abbreviation Description Type Units Full Reduced 

Duration of wind at 10 meters above 5 m s-1 wgt5 Weather Continuous hr X X 
Duration of wind at 10 meters above 9 m s-1 wgt9 Weather Continuous hr X X 

Duration of wind at 10 meters above 13 m s-1 wgt13 Weather Continuous hr X X 
Duration of wind at 10 meters above 18 m s-1 wgt18 Weather Continuous hr X X 

Duration of wind gusts above 13 m s-1 ggt13 Weather Continuous hr X X 
Duration of wind gusts above 18 m s-1 ggt18 Weather Continuous hr X X 
Duration of wind gusts above 22 m s-1 ggt22 Weather Continuous hr X X 
Duration of wind gusts above 27 m s-1 ggt27 Weather Continuous hr X X 
Duration of wind gusts above 35 m s-1 ggt36 Weather Continuous hr X X 
Duration of wind gusts above 44 m s-1 ggt45 Weather Continuous hr X X 

Continuous duration of wind at 10 meters above 5 m s-1 Cowgt5 Weather Continuous hr X X 
Continuous duration of wind at 10 meters above 9 m s-1 Cowgt9 Weather Continuous hr X X 

Continuous duration of wind at 10 meters above 13 m s-1 Cowgt13 Weather Continuous hr X X 
Continuous duration of wind at 10 meters above 18 m s-1 Cowgt18 Weather Continuous hr X X 

Total precipitation TotPrec Weather Continuous mm X   
Wind gust* Gust Weather Continuous m s-1 X X 

Wind at 10-m height* Wind10m Weather Continuous m s-1 X X 

Soil moisture* SoilMst Weather Continuous mm mm-

1 X X 

Precipitation Rate* PreRate Weather Continuous mm hr-1 X   
Count of Assets Assets Infrastructure Continuous count X X 

Percent Developed PercDeveloped Land Cover Continuous % X X 
Percent Coniferous PercConif Land Cover Continuous % X X 
Percent Deciduous PercDecid Land Cover Continuous % X X 
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Table 3: Current Sandy simulation evaluation metrics; the formulas for RMSE, MB and ME are listed in the Appendix. The wind 
speed observations are taken from METAR airport stations and the precipitation from Stage IV data for Connecticut. Times with 
missing data were not included in the error metrics. The location of these airport stations are denoted with red circles on Figure 1. 
 

Station ID/Location Variable Simulation  RMSE MB MAE 

KBDL: North/Central CT 
41.94° N, 72.68° W 

 
Wind speed at 10-m (m s-1) 

CNTRL 
GODDARD 

MORRIS 
NOTCFLX 

WDM6 
ENS MEAN 

 2.66 
3.09 
2.38 
2.83 
2.86 
2.61 

0.09 
0.13 
0.39 
0.01 
0.01 
0.12 

2.16 
2.52 
2.13 
2.21 
2.35 
2.19 

KDXR: Southwestern CT 
41.37° N, 73.48° W Wind speed at 10-m (m s-1) 

CNTRL 
GODDARD 

MORRIS 
NOTCFLX 

WDM6 
ENS MEAN 

 3.84 
4.62 
3.92 
3.91 
4.29 
3.96 

2.49 
2.76 
3.14 
2.57 
2.67 
2.73 

3.14 
3.64 
3.25 
3.08 
3.45 
3.22 

KGON: Southeastern CT 
41.33° N, 72.045° W Wind speed at 10-m (m s-1) 

CNTRL 
GODDARD 

MORRIS 
NOTCFLX 

WDM6 
ENS MEAN 

 3.71 
4.54 
3.75 
3.75 
3.68 
3.61 

2.53 
2.98 
2.53 
2.75 
1.88 
2.53 

3.00 
3.66 
3.08 
3.17 
2.78 
2.88 

KIJD: Eastern CT 
41.74° N, 72.18° W Wind speed at 10-m (m s-1) 

CNTRL 
GODDARD 

MORRIS 
NOTCFLX 

WDM6 
ENS MEAN 

 3.76 
4.30 
3.64 
4.16 
3.77 
3.81 

2.53 
2.69 
2.90 
3.20 
2.32 
2.73 

3.32 
3.67 
3.14 
3.72 
3.20 
3.37 

Averaged over Connecticut Precipitation (mm) 

CNTRL 
GODDARD 

MORRIS 
NOTCFLX 

WDM6 
ENS MEAN 

 2.78 
2.74 
1.94 
3.48 
2.97 
2.62 

0.83 
0.53 
0.55 
0.97 
0.55 
0.69 

1.60 
1.71 
1.25 
2.02 
1.59 
1.57 
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Table 4: Average maximum gust, maximum wind at 10-m and total precipitation for the Current (“Mean(Current)) and Future 

(Mean(Future)) Sandy runs in the Eversource service territory. The last column (% Increase) represents the percentage increase from 

Current Sandy to Future Sandy by each simulation for each weather variable. 

Variable Simulation Unit Mean(Current) Mean(Future) % Increase 
MAXGust CNTRL m s-1 28.4 31.3 10.3% 
MAXGust GODDARD m s-1 29 29.8 3.0% 
MAXGust MORRIS m s-1 28.1 29.9 6.3% 
MAXGust NOTCFLX m s-1 27.3 29 6.2% 
MAXGust WDM6 m s-1 28.3 31.1 9.9% 
MAXGust ENS MEAN m s-1 27.7 28.9 4.3% 

MAXWind10m CNTRL m s-1 15.9 17.8 12.0% 
MAXWind10m GODDARD m s-1 16.3 17.2 5.5% 
MAXWind10m MORRIS m s-1 15.6 17.4 11.0% 
MAXWind10m NOTCFLX m s-1 15.2 16.4 8.0% 
MAXWind10m WDM6 m s-1 15.6 17.6 12.5% 
MAXWind10m ENS MEAN m s-1 15.4 16.29 5.8% 

TotPrec CNTRL mm 51.4 103.6 101.6% 
TotPrec GODDARD mm 42.8 80.1 87.4% 
TotPrec MORRIS mm 43.8 125.5 186.8% 
TotPrec NOTCFLX mm 51 116.2 127.6% 
TotPrec WDM6 mm 43.5 69.5 59.7% 
TotPrec ENS MEAN mm 46.5 98.9 112.7% 
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Table 5: Proof-of-concept results for predicting Hurricane Irene from Hurricane Sandy, and Hurricane Sandy from Irene using data 

from Wanik et al. (2015) and He et al. (2016). 

  Full Model Reduced Model 
Holdout 
Sample ML r MAE RMSE sum(Pred) PercErr r MAE RMSE sum(Pred) PercErr 

Irene (2011) 
BART 0.7 3.59 6.85 11,658 -26% 0.71 4.81 7.15 23,819 56% 

BT 0.66 4.22 6.88 17,831 13% 0.65 4.26 6.94 17,990 18% 
RF 0.69 4.69 7.01 20,234 28% 0.67 5.11 7.25 22,510 48% 

Sandy (2012) 
BART 0.59 3.75 6 16,823 11% 0.63 3.59 5.72 13,094 -17% 

BT 0.59 3.98 6.12 18,014 18% 0.69 3.38 5.47 11,844 -25% 
RF 0.57 4.02 6.02 18,692 23% 0.65 3.59 5.43 16,185 2% 
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Table 6: Error metrics for Current Sandy calibration from model validation (using leave-one-out cross-validation). The correlation (r), 

root-mean-square error (RMSE) and mean absolute error (MAE) were calculated for each grid cell; the sum of predicted outages for 

Current Sandy (sum(Pred)) was calculated for the entire service territory. The actual outages that occurred during Current Sandy 

were15,251. 

 

  
BART BT RF 

  r RMSE MAE sum(Pred) r RMSE MAE sum(Pred) r RMSE MAE sum(Pred) 

FU
L

L
 M

O
D

E
L

 
(W

IN
D

 A
N

D
 P

R
E

C
IP

) CNTRL 0.86 4.68 2.44 15,357 0.87 4.58 2.38 14,721 0.56 7.84 3.76 10,856 

GODDARD 0.86 4.75 2.49 15,300 0.86 4.62 2.41 14,862 0.60 7.53 3.58 11,937 

MORRIS 0.86 4.68 2.44 15,386 0.86 4.64 2.42 14,867 0.75 6.88 3.30 11,334 

NOTCFLX 0.85 4.83 2.46 15,213 0.87 4.59 2.38 14,817 0.52 7.98 4.07 12,669 

WDM6 0.86 4.64 2.47 15,305 0.86 4.73 2.42 14,794 0.58 7.77 3.70 10,399 
ENS 

MEAN 0.85 4.78 2.47 15,428 0.86 4.65 2.41 14,845 0.62 7.67 3.73 10,767 

R
E

D
U

C
E

D
 M

O
D

E
L

 
(W

IN
D

 O
N

L
Y

) 

CNTRL 0.86 4.73 2.48 15,433 0.86 4.71 2.40 14,793 0.62 7.53 3.80 12,933 

GODDARD 0.85 4.77 2.50 15,273 0.86 4.66 2.41 14,769 0.64 7.47 3.51 11,500 

MORRIS 0.86 4.68 2.44 15,357 0.86 4.65 2.40 14,804 0.8 6.88 3.30 11,499 

NOTCFLX 0.86 4.64 2.43 15,372 0.86 4.66 2.42 14,840 0.54 7.76 3.98 13,397 

WDM6 0.86 4.72 2.49 15,456 0.86 4.69 2.42 14,675 0.60 7.69 3.62 10,514 
ENS 

MEAN 0.86 4.72 2.47 15,242 0.86 4.66 2.41 14,803 0.66 7.65 3.61 10,105 
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Table 7: Comparison of model improvement in MAE per grid cell when precipitation variables were included in the outage prediction 

model for Current Sandy (full data input). Positive difference (“Diff”) and percent difference (“PercDiff”) values indicate an increase 

in predicted Future Sandy outages for machine learning (ML) models using the full data input (MAE is lower in a more accurate 

model).  

 BART BT RF 
WRF Reduced Full Diff PercDiff Reduced Full Diff PercDiff Reduced Full Diff PercDiff 

CNTRL 2.48 2.44 0.04 1.6% 2.40 2.38 0.02 0.8% 3.80 3.76 0.04 1.1% 
GODDARD 2.50 2.49 0.01 0.4% 2.41 2.41 0.00 0.0% 3.51 3.58 -0.07 -2.0% 

MORRIS 2.44 2.44 0.00 0.0% 2.40 2.42 -0.02 -0.8% 3.30 3.30 0.00 0.0% 
NOTCFLX 2.43 2.46 -0.03 -1.2% 2.42 2.38 0.04 1.7% 3.98 4.07 -0.09 -2.3% 

WDM6 2.49 2.47 0.02 0.8% 2.42 2.42 0.00 0.0% 3.62 3.70 -0.08 -2.2% 
ENS  2.47 2.47 0.00 0.0% 2.41 2.41 0.00 0.0% 3.61 3.73 -0.12 -3.3% 
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Table 8: Actual and relative percentage increase or decrease of predicted Future Sandy outages compared to Current Sandy for each 

scenario by weather simulation and machine learning model. The AVG column and row represent the arithmetic average of the 

weather simulations and machine learning models, respectively.  

  

BART BT RF AVG BART BT RF AVG 

  Outages Outages Outages Outages %Δ %Δ %Δ %Δ 

W
IN

D
 A

N
D

 R
A

IN
 

CNTRL 36,207 23,185 35,383 31,592 137% 52% 132% 107% 
GODDARD 15,674 13,313 19,164 16,050 3% -13% 26% 5% 

MORRIS 14,595 20,239 32,650 22,495 -4% 33% 114% 48% 
NOTCFLX 25,800 19,319 35,177 26,765 69% 27% 131% 76% 

WDM6 34,629 23,408 27,431 28,489 127% 53% 80% 87% 
ENS  20,076 22,176 32,988 25,080 32% 45% 116% 64% 

W
IN

D
 O

N
L

Y
 CNTRL 41,680 19,323 34,658 31,887 173% 27% 127% 109% 

GODDARD 15,216 13,749 18,363 15,776 0% -10% 20% 3% 
MORRIS 20,735 17,718 27,090 21,848 36% 16% 78% 43% 

NOTCFLX 23,830 22,073 27,996 24,633 56% 45% 84% 62% 
WDM6 26,354 21,687 24,559 24,200 73% 42% 61% 59% 

ENS  17,770 20,376 26,693 21,613 17% 34% 75% 42% 
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Table 9: Comparison of Future Sandy outage predictions when precipitation variables were included (full data input). Positive 

difference (“Diff.”) and percent difference (“Perc. Diff.”) values indicate an increase in predicted Future Sandy outages for ML 

models using the full data input. 

 BART BT RF 

WRF Reduced Full Diff PercDiff Reduced Full Diff PercDiff Reduced Full Diff PercDiff 
CNTRL 41,680 36,207 -5,473 -13% 19,323 23,185 3,862 20% 31,887 35,383 3,496 11% 

GODDARD 15,216 15,674 458 3% 13,749 13,313 -436 -3% 15,776 19,164 3,388 21% 

MORRIS 20,735 14,595 -6,140 -30% 17,718 20,239 2,521 14% 21,848 32,650 10,802 49% 

NOTCFLX 23,830 25,800 1,970 8% 22,073 19,319 -2,754 -12% 24,633 35,177 10,544 43% 

WDM6 26,354 34,629 8,275 31% 21,687 23,408 1,721 8% 24,200 27,431 3,231 13% 

ENS 17,770 20,076 2,306 13% 20,376 22,176 1,800 9% 21,613 32,988 11,375 53% 
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Table A.1: Outage model predictions for Sandy and Irene using BART, BT and RF models with 

full and reduced data input, trained using 76 extratropical storms and the other tropical storm. 

Holdout Sample ML r MAE RMSE sum(Pred) PercErr 

Full Model 

Irene 
(2011) 

BART 0.25 4.88 8.07 5,411 -65% 
BT 0.24 5.24 8.73 1,164 -92% 
RF 0.31 4.44 7.64 5,933 -62% 

Sandy 
(2012) 

BART 0.4 4.89 9.59 2,370 -84% 
BT 0.36 4.37 9.13 6,668 -56% 
RF 0.54 4.38 9.21 4,922 -67% 

Reduced 
Model 

Irene 
(2011) 

BART 0.48 4.91 8.19 2,186 -86% 
BT 0.3 5.21 8.68 1,234 -92% 
RF 0.6 4.82 8.1 2,523 -84% 

Sandy 
(2012) 

BART 0.57  4.03   8.03  5,286 -66% 
BT 0.54 4.15 8.1 10,024 -34% 
RF 0.7 3.93 8.31 6,745 -56% 

 
 

 

 

 

 

 

 

 

 



58 
 

 

Figure 1: (left) Distribution of actual outages per 2-km grid cells that cover the Eversource service territory during Current Sandy 

(2012). White areas without grid cells represent regions served by other utility companies. (right) Population density per census tract 

(source: 2000 Census data.) Counties denoted with thick black lines and labels. 
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Figure 2: (a) Map denoting the approximate location of the 54, 18 and 6 km WRF domains used for weather simulations. The field 
displayed is model-simulated brightness temperature at hour 66 of the CNTRL simulation, valid 18 UTC 28 October 2012; with 
resolution corresponding to the grid length in each domain. (b) Corresponding GOES-13 Infrared image from 18:15 UTC 28 October 
2012, black box corresponds to 6km domain in subpanel (a), and color palettes are approximate but not exact. 
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Figure 3: Wind speed at 10-m for the Current Sandy simulations compared to observations 

(black dots) in four Connecticut stations. Each colored line is an individual WRF simulation. 

There may be missing values in the observations at different time steps depending on the 

evaluated airport station.  
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Figure 4: Accumulated precipitation from each WRF simulation ensemble member (name conventions correspond to Table 1), the 

ensemble mean of the five members (ENS), and Stage IV radar data (ACTUAL) which represents precipitation observations. The 

Current Sandy tracks are added in thick black lines, with Future Sandy tracks in dashed lines.  
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Figure 5: (a) Current and Future Sandy storm tracks. Colored lines correspond to individual 

WRF simulations, the grey line indicates the ensemble mean track (ENS), and the dashed black 

line represents the National Hurricane Center (NHC) “best track” for Current Sandy. (b) Zoomed 

in to highlight storm landfall location. 
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Figure 6: Cumulative distributions of total accumulated precipitation for Current and Future Sandy simulations in the sub-region of 

the model domain enclosing the Eversource service territory. Colors correspond to WRF simulations in Figure 3. 
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Figure 7: Cumulative distributions of maximum gust for Current and Future Sandy simulations in the sub-region of the model domain 

enclosing the Eversource service territory. Colors correspond to WRF simulations in Figure 3. 



65 
 

 

Figure 8: Cumulative distributions of maximum wind at 10-m for Current and Future Sandy simulations in the sub-region of the 

model domain enclosing the Eversource service territory. Colors correspond to WRF simulations in Figure 3. 
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Figure 9: Changes in select wind and precipitation magnitude  from Current to Future Sandy. 

Positive values indicate an increase in intensity during Future Sandy.
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Figure 10: Modeling framework that combines weather, land use and infrastructure into outage predictions for Current Sandy scenarios. Calibrated 

models were then applied to Future Sandy scenarios. 
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Figure 11: Relative variable importance for the BART, BT and RF models, with full data input (normalized by highest value in column – does not 
include assets per grid cell). Darker colors indicate higher relative importance.  
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W
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Cowgt13 27 42 47 36 36 20 0 0 0 38 0 0 10 11 48 25 33 2 

Cowgt18 16 21 18 6 10 19 0 0 0 0 0 0 3 1 0 0 0 0 

Cowgt5 44 47 58 52 59 33 3 1 4 53 1 0 18 14 38 83 33 5 

Cowgt9 19 27 39 46 32 32 0 0 0 79 0 1 5 9 12 62 8 4 

ggt13 51 32 47 35 51 33 1 1 3 0 52 0 21 14 28 13 29 10 

ggt17 46 31 33 32 44 39 1 0 0 2 0 1 10 4 7 10 8 4 

ggt22 45 24 44 42 23 29 0 0 0 12 0 0 13 2 8 14 3 5 

ggt27 30 45 42 30 35 51 0 13 3 0 4 0 2 32 22 3 10 12 

ggt35 8 16 7 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 

MAXGust 60 47 52 33 46 57 3 100 100 0 0 1 46 100 100 12 22 27 

MAXPreRate 62 61 45 38 34 37 1 0 0 0 0 0 33 32 29 59 21 13 

MAXSoilMst 51 38 47 41 48 36 1 1 0 1 4 1 26 17 24 19 22 8 

TotPrec 58 77 56 43 49 33 1 11 3 4 8 0 42 39 79 33 43 16 

MAXWind10m 40 58 53 30 41 43 68 1 0 0 1 34 47 34 55 23 36 69 

MEANGust 44 48 49 41 41 53 13 21 12 1 15 100 49 70 65 18 35 100 

MEANPreRate 64 43 58 45 46 35 100 1 0 4 48 1 100 15 45 16 56 12 

MEANSoilMst 37 37 47 36 41 32 0 0 0 0 0 0 35 15 23 15 26 7 

MEANWind10m 47 43 41 29 48 52 0 1 0 2 9 25 42 38 40 29 42 56 

PercConif 70 72 100 90 81 74 0 0 0 0 0 0 33 27 37 29 36 16 

PercDecid 100 100 99 100 100 100 17 5 6 6 7 2 61 32 45 32 44 17 

PercDev 81 81 91 79 75 67 28 6 14 15 33 1 91 49 63 44 81 22 

wgt13 24 34 40 38 42 19 0 1 40 4 49 0 7 15 45 22 33 2 

wgt18 24 24 13 7 9 19 0 1 0 0 0 0 3 1 0 0 0 0 

wgt5 42 39 62 58 74 39 10 1 11 100 100 0 43 32 42 100 100 12 

wgt9 23 34 36 42 52 34 0 0 0 1 15 0 9 15 19 17 15 6 
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Figure 12: Partial dependence plots related to select geographic variables. Y axis represent change in predicted outages per 2-km grid 
cell. Colors are related to WRF simulations in Figure 3. 
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Figure 13: Partial dependence plots related to select wind variables. Y axis represent change in predicted outages per 2-km grid cell. 
Colors are related to WRF simulations in Figure 3. 
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Figure 14: Partial dependence plots related to select precipitation variables. Y axis represent change in predicted outages per 2-km 
grid cell. Colors are related to WRF simulations in Figure 3. 
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Figure 15:  Distribution of predicted outages for Future Sandy by simulation and machine 

learning models for the full model forcing (wind and precipitation variables). Legend matches 

Current Sandy actual outages in Figure 1. 
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Figure 16: Change in predicted outages from Current to Future Sandy for the full data input 
(positive numbers indicate an increase in Future Sandy).
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Figure 17: Quantile-quantile plot showing the increase in predicted outages per grid cells for Future Sandy (Y axis) compared to 

actual Current Sandy outages per grid cell (X axis) for BART, BT and RF models with the full data input. Quantiles represent the 5, 

10, 20, 30, 40, 50, 60, 70, 80, 90, and 95th percentiles. 
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    Reduced Data Input Full Data Input Δ(Full - Reduced) 

    Fairfield County Eversource-
Connecticut Territory Fairfield County Eversource-

Connecticut Territory Fairfield County Eversource-
Connecticut Territory 

    MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

MAX 
Gust 

MAX  
Wind    
10m 

Tot       
Prec 

BA
R

T
 

CNTRL 0.41 0.38 -0.50 0.14 0.13 -0.19 0.30 0.28 -0.37 0.04 0.02 -0.13 -0.11 -0.10 0.13 -0.10 -0.11 0.06 

ENS 0.30 0.52 -0.57 0.13 0.16 -0.15 0.27 0.43 -0.49 0.23 0.17 -0.27 -0.03 -0.09 0.08 0.10 0.01 -0.12 

GODDARD 0.36 0.53 0.33 0.01 0.14 0.13 0.45 0.63 0.42 0.09 0.26 0.17 0.09 0.10 0.09 0.08 0.12 0.04 

MORRIS 0.51 0.33 0.17 0.12 0.02 0.12 0.51 0.33 0.11 0.11 0.03 0.09 0.00 0.00 -0.06 -0.01 0.01 -0.03 

NOTCFLX 0.53 0.44 -0.46 0.18 0.12 -0.19 0.55 0.45 -0.46 0.16 0.09 -0.12 0.02 0.01 0.00 -0.02 -0.03 0.07 

WDM6 0.58 -0.12 0.29 0.25 0.06 0.02 0.53 -0.14 0.28 0.28 0.05 0.03 -0.05 -0.02 -0.01 0.03 -0.01 0.01 

BT
 

CNTRL 0.34 0.30 -0.44 0.17 0.13 -0.20 0.31 0.27 -0.37 0.24 0.23 -0.23 -0.03 -0.03 0.07 0.07 0.10 -0.03 

ENS 0.26 0.51 -0.48 0.02 0.12 0.01 0.26 0.51 -0.53 0.00 0.11 0.00 0.00 0.00 -0.05 -0.02 -0.01 -0.01 

GODDARD 0.40 0.58 0.38 0.13 0.25 0.14 0.39 0.53 0.36 0.15 0.28 0.16 -0.01 -0.05 -0.02 0.02 0.03 0.02 

MORRIS 0.63 0.44 0.20 0.17 0.06 0.11 0.63 0.44 0.17 0.15 0.11 0.10 0.00 0.00 -0.03 -0.02 0.05 -0.01 

NOTCFLX 0.55 0.46 -0.48 0.12 0.10 -0.11 0.55 0.43 -0.43 0.09 0.02 -0.01 0.00 -0.03 0.05 -0.03 -0.08 0.10 

WDM6 0.22 -0.02 -0.04 0.31 0.09 0.03 -0.04 0.03 -0.20 0.38 0.14 0.01 -0.26 0.05 -0.16 0.07 0.05 -0.02 

R
F 

CNTRL -0.23 -0.18 0.36 -0.11 -0.16 0.01 -0.32 -0.27 0.45 -0.20 -0.24 0.09 -0.09 -0.09 0.09 -0.09 -0.08 0.08 

ENS -0.24 -0.46 0.58 -0.22 -0.09 0.25 -0.24 -0.43 0.53 -0.25 -0.10 0.28 0.00 0.03 -0.05 -0.03 -0.01 0.03 

GODDARD -0.11 -0.07 -0.11 0.10 0.33 0.11 -0.13 -0.08 -0.14 0.10 0.29 0.10 -0.02 -0.01 -0.03 0.00 -0.04 -0.01 

MORRIS -0.08 0.01 -0.02 -0.06 -0.05 0.09 0.15 0.19 0.03 -0.03 -0.02 0.14 0.23 0.18 0.05 0.03 0.03 0.05 

NOTCFLX -0.56 -0.48 0.52 -0.15 -0.28 0.27 -0.60 -0.49 0.52 -0.15 -0.30 0.26 -0.04 -0.01 0.00 0.00 -0.02 -0.01 

WDM6 0.61 -0.11 0.37 0.29 0.04 0.03 0.60 -0.11 0.35 0.35 0.05 0.04 -0.01 0.00 -0.02 0.06 0.01 0.01 

Figure 18: Correlation between increased outages and weather magnitude using Spearman correlation for Fairfield County and the 
Eversource Connecticut service territory for the full and reduced data input. Red cells indicate positive correlation, blues cells indicate 
negative correlation, and white cells indicate a lack of correlation. Difference between Spearman correlations for full and reduced data 
input are also tabulated in right third (positive values indicate an improvement in the full model). 
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Figure A.1: Comparison of CDF plots for select weather variables for 76 extratropical storms (occurred between 2005 and 2017), 

Hurricane Irene (2011), and Hurricane Sandy (2012). 

 


	Capsule
	1. Introduction
	2. Weather Data
	2.1 Background
	2.2 Evaluation of Current Sandy WRF Simulations
	2.3 Comparison between Current and Future Sandy Simulations
	2.3.1 Storm Track Comparison
	2.3.2 Storm Magnitude Discussion


	3. Outage Prediction Model (OPM)
	3.1 Background
	3.2 Nonparametric Models
	3.3 Methods
	3.3.1 Full and Reduced OPM Data Inputs
	3.3.2 Outage Prediction Model for Current Sandy
	3.3.3 Outage Prediction Model for Future Sandy
	3.3.4 Proof-of-Concept Results from Our Previous Research


	4. Results and Discussion
	4.1 Outage Predictions for Current Sandy Scenarios (Model Validation)
	4.1.1 Variable Importance for Current Sandy
	4.1.2 Partial Dependence for Current Sandy

	4.2 Outage Predictions for Future Sandy Scenarios (Model Test)
	4.2.1 Comparison between Full and Reduced Data Inputs on Future Sandy Outages
	4.2.2 Influence of Storm Track on Future Sandy Outages
	4.2.3 Influence of Storm Magnitude on Future Sandy Outages
	4.2.4 Comparison of Machine Learning Models

	4.3 Limitations

	5. Conclusions
	Acknowledgements
	Appendixes
	Error Metrics
	Proof-of-Concept Using Prior Research Data

	References

