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Abstract 1 

The interaction of severe weather, overhead lines and surrounding trees is the leading cause of 2 

outages to an electric distribution network in forested areas. In this paper, we show how utility-3 

specific infrastructure and land cover data, aggregated around overhead lines, can improve 4 

outage predictions for Eversource Energy (formerly Connecticut Light & Power), the largest 5 

electric utility in Connecticut. Eighty nine storms from different seasons (cold weather, warm 6 

weather, transition months) in the period 2005 – 2014, representing varying types 7 

(thunderstorms, blizzards, nor’easters, hurricanes) and outage severity, were simulated using the 8 

Weather Research and Forecasting (WRF) atmospheric model. WRF simulations were joined 9 

with utility damage data to calibrate four types of models: a decision tree (DT), random forest 10 

(RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined 11 

predictions from DT, RF and BT. The study shows that ENS model forced with weather, 12 

infrastructure and land cover data was superior to the other models we evaluated, especially in 13 

terms of predicting the spatial distribution of outages. This framework could be used for 14 

predicting outages to other types of critical infrastructure networks with benefits for emergency 15 

preparedness functions in terms of equipment staging and resource allocation. 16 

Keywords: Electric distribution network, critical infrastructure damage modeling, data mining, 17 

numerical weather prediction, land cover, hurricanes. 18 

 19 
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1. Introduction 20 

The severe storms of 2011 and 2012 will resonate in the minds of Connecticut’s populous for 21 

years to come. For the first time since Hurricane Gloria (1985) impacted Connecticut, prolonged 22 

power outages (longer than ten days) occurred three times within the span of fifteen months 23 

during Storm Irene (2011), the October nor’easter (2011), and Hurricane Sandy (2012). The 24 

storms affected hundreds of thousands of customers and each caused hundreds of millions of 25 

dollars of damage to the State. Several investigative reports by regulators (McGee et al. 2012) 26 

and consultants (Davies Consulting 2012, O'Neill et al. 2013, Witt Associates 2011) followed the 27 

major events, resulting in several improvement recommendations for Connecticut’s utilities. One 28 

of the recommendations from the reports was that electric utility companies should use outage 29 

prediction models to support utility emergency preparedness efforts before a storm event. Such a 30 

model could aid the pre-storm deployment of crews and resources (i.e. poles, transformers, and 31 

conductors), thereby decreasing restoration times and increasing reliability to customers. In this 32 

paper, we present new research on predicting outage locations (“outages”) from severe weather 33 

in Connecticut. We define outages as locations that require a manual intervention to restore 34 

power, which is separate from modeling the number of customers affected (“customer outages”). 35 

Much research has been done on storm-related impacts to the electric distribution network; 36 

including predicting damages to overhead lines (i.e. broken poles) (Guikema et al. 2010); 37 

predicting the number of outages that need to be repaired (Guikema et al. 2014a, Mensah and 38 

Duenas-Osorio 2014); predicting the associated customers affected by power outages (Guikema 39 

et al. 2008, Guikema et al. 2014b, Han et al. 2009b), and modeling the length of outage durations 40 

during major storm events (Liu et al. 2007, Nateghi et al. 2011, Nateghi et al. 2014b). While 41 

each of these are distinct research topics, the underlying fundamentals of each problem are 42 
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similar; critical infrastructure and environmental data are related to actual utility data (i.e. 43 

outages, customers or damages), which tend to be zero-inflated data with nonlinear response 44 

thresholds (Guikema and Coffelt 2009). In addition, modeling utility-related problems is 45 

complex due to different interactions involved (e.g. tree conditions, soil saturation, infrastructure 46 

age). To address this complexity, an assortment of methods have been used for utility-related 47 

problems; including generalized linear models (GLMs) (Cerruti and Decker 2012, Hongfei Li et 48 

al. 2010), spatial and non-spatial generalized linear mixed models (GLMMs) (Guikema and 49 

Davidson 2006, Liu et al. 2008), generalized additive models (GAMs) (Han et al. 2009a), 50 

classification and regression trees (CART) (Quiring et al. 2011), random forest (Nateghi et al. 51 

2014a) and Bayesian additive regression trees (BART) (Nateghi et al. 2011). In addition to count 52 

data models, probabilistic models have also been coupled with physical models of the electric 53 

system with the aim to predict failures on both transmission and distribution lines (Mensah and 54 

Duenas-Osorio 2014). The evolution of the implementation of these models is also interesting; 55 

many of these models have been implemented as i) individual models, ii) average of multiple 56 

individual models, or iii) as part of a hybrid two-stage model (Guikema and Quiring 2012).  57 

Recent literature (Nateghi et al. 2014a) has shown that the random forest model is superior to 58 

other models that have been built on the same set of hurricane data (Guikema and Quiring 2012, 59 

Han et al. 2009a, Han et al. 2009b). In addition to modeling improvements, the quality and 60 

granularity of utility-specific data (i.e. tree-trimming and overhead line infrastructure) and 61 

environmental data (i.e. soil conditions, aspect ratio, and elevation) used as forcing parameters 62 

has led to models better representing the physical processes that cause outages. As a complement 63 

to these data-intensive/utility-specific models, there has been additional research dedicated to 64 

investigating whether publicly available data can be used in lieu of proprietary, utility-specific 65 
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data (i.e. using population counts for Census data rather than using actual customer data) such 66 

that the calibrated models can be generalized to other areas. We authors believe this area of 67 

research is exciting and important as such early warning tools can lead to better emergency 68 

preparedness efforts. Recent work by Nateghi et al. (2014a) has shown that these generalized 69 

models have a marginal yet acceptable decrease in accuracy than the utility-specific models, 70 

which allows for the calibrated models to be applied to other service territories for which outage 71 

models don’t currently exist. In addition to short-term outage models, other research has 72 

extended these generalized models into a long-term evaluation of tropical cyclone risk from 73 

climate change (Staid et al. 2014). 74 

Related research by Guikema et al. (2014b) have taken their utility-specific customer outage 75 

model for a Gulf Coast utility, called Hurricane Outage Prediction Model (HOPM), to create the 76 

Spatially Generalized Hurricane Outage Prediction Model (SGHOPM) to predict customer 77 

outages for Hurricane Sandy along the Eastern seaboard. Although SGHOPM did well for many 78 

regions (including Massachusetts and Rhode Island), it underestimated customer outages that 79 

impacted Connecticut. The authors suggest that a large amount of customer outages in 80 

Connecticut might have been caused by storm surge which wouldn’t be captured by SGHOPM, 81 

though conceding this required further investigation. Although the authors are correct that storm 82 

surge was abundant and catastrophic in Connecticut during Sandy, with some coastal stations 83 

reporting >12 feet of surge (Fanelli et al. 2013), the storm surge only contributed to a minor 84 

fraction of the customer outages in the Eversource and neighboring United Illuminating service 85 

territories. According to sources at each utility, the majority of outages were actually caused by 86 

trees interacting with the overhead lines. This might highlight that not all distribution utilities 87 

respond similarly to severe weather; a 50 mph wind gust may have a different impact in 88 
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Connecticut than it would in a Gulf Coast state, which we believe is a function of the overhead 89 

infrastructure and the surrounding vegetation. Connecticut is among the most forested and 90 

densely populated regions in the country as measured by the amount of wildland-urban interface 91 

(Radeloff et al. 2005), which makes the region especially susceptible to tree-related utility 92 

damage (Wagner et al. 2012). 93 

In this paper, we build on the current research regarding modeling outages on the overhead 94 

distribution lines. While most outage models have focused on hurricanes, we will use high-95 

resolution numerical weather simulations for 89 storms of varying type (e.g. hurricanes, 96 

blizzards, thunderstorms) and severity (from 20 outages to >15,000 outages). We will attempt to 97 

answer the following questions: (1) if utility outage data exists, how accurately can a predictive 98 

model relate high-resolution numerical weather simulation data to outages for a range of storm 99 

types, severities and seasons (e.g. warm weather, cold weather and transition months)?; and (2) 100 

how much added performance does the utility-specific data (e.g. land cover data aggregated 101 

around overhead lines and distribution infrastructure data) contribute to magnitude (count of 102 

outages) and spatial (distribution of predicted outages) error metrics? 103 

The paper is organized into the following additional sections. Section 2 explains the study 104 

area and datasets used in the model. Section 3 covers the models used to predict utility damages 105 

and the model validation strategy. Section 4 presents the results of all models evaluated, as well 106 

as a selection of the best model overall. Section 5 focuses on the hurricanes outage modeling 107 

results for the most simple and complex models we evaluated. Section 6 provides discussion of 108 

all the results and comparison to other outage models in the literature, followed by the 109 

conclusion in Section 7. 110 
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2. Study Area and Datasets 111 

Eversource Energy (“Eversource”), formerly the Connecticut Light and Power Company 112 

(CL&P), is the largest investor-owned utility in Connecticut and distributes electricity to 1.2 113 

million customers in 149 towns across Connecticut via >18,000 miles of overhead distribution 114 

lines (Connecticut Light & Power 2014). Each of the 149 towns belongs to one of 18 Area Work 115 

Centers (AWCs) which are used to organize restoration crews (note that AWCs can have up to 116 

15 associated towns, Figure 1). Although Eversource also serves customers in Massachusetts and 117 

New Hampshire, we focus solely on Connecticut in this paper. Connecticut has a wide variety of 118 

land cover conditions; from a southerly coastal landscape, to urban centers in central and 119 

southwestern Connecticut, to the forested uplands of eastern and western Connecticut. 120 

Population density is most concentrated in the central and coastal areas. 121 

2.1 Weather Simulations 122 

We simulated the weather for 89 storms that impacted the Eversource service territory 123 

between 2005 and 2014 using the Advanced Research (ARW) dynamics core of the Weather 124 

Research and Forecasting Model (WRF) model version 3.4.1 (Skamarock et al. 2008).  The 125 

events were dynamically downscaled from analyzed fields provided by the Global Forecast 126 

System (GFS, at 6-hourly intervals with 1.0 degree grid resolution) produced by the National 127 

Center for Environmental Prediction (NCEP). In order to minimize initial condition (IC) and 128 

boundary condition (BC) errors, the events were modeled as hindcasts (e.g. the analyses are used 129 

to derive both the model's IC and BC updates).  130 

For the WRF setup, three nested domains (Figure 2) were created to gradually downscale 131 

from the 1.0 deg GFS analysis to a 2 km resolution: an outer domain with resolution of 18 km, 132 

an inner-intermediate domain with 6 km, and the focus area with 2 km with a topography dataset 133 



6 

 

at 30 arc-second (~1000 m) resolution.  A subset of the inner most domain provides the modeled 134 

atmospheric conditions, which are derived from the grid cells within the area of this study.  135 

WRF was configured to use a 30 second timestep, 2-way feedback between nested grids, and 136 

28 vertical levels. The schemes used to parameterize the physical processes included the 137 

Thompson for cloud microphysics (Thompson et al. 2008); Grell 3D for convection (Grell and 138 

Devenyi 2002), with the 2 km inner nest solved explicitly; RRTM for Long Wave radiation  139 

(Mlawer et al. 1997), initialized each 18, 6, and 2 minutes for each domain, respectively; 140 

Goddard for Short Wave radiation  (Chou and Suarez 1994); MM5 similarity for Surface Layer 141 

(Zhang and Anthes 1982); Unified NOAH for Land Surface Model  (Tewari et al. 2004); Yonsei 142 

for Planetary Boundary Layer  (Song-You Hong et al. 2006); and topographic correction for 143 

surface wind to represent extra-drag from sub-grid topography and enhanced flow at hill tops 144 

(Jimenez and Dudhia 2012); all the others settings were left to the default configuration. 145 

For each event, the model was initialized 6 hours prior to the time of the first damage report 146 

running in the Eversource network for a 60 hour simulation time with hourly outputs. From these 147 

outputs, various wind and precipitation variables were derived and reduced to sustained mean 148 

and maximum representative value per grid cell (Table 1). The maximum value per grid cell 149 

refers to the maximum value over the duration of the 60 hour simulation, while the sustained 150 

mean value per grid cell refers to the maximum 4 hour mean from a “running window” during 151 

the simulation. In addition to these sustained and maximum values, we also calculated the 152 

duration of 10m wind speed and wind gust above a range of thresholds (e.g. 9, 13, 18 m/s for 10 153 

m wind speed, and 18, 27, 36, 45 m/s for gust winds). In terms of precipitation we used WRF-154 

derived storm-total accumulated liquid and solid (snow and ice) precipitation and soil moisture. 155 

The impact of heavy rains has been shown to be significant in cases of stationary storms 156 
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(typically associated with complex terrain areas), which can exemplify wind effects due to 157 

saturated soils (Guikema et al. 2014b). On the other hand, blizzards and freezing rain can 158 

enhance the effect of winds on tree damages. 159 

2.2 Weather Simulation Evaluation 160 

Given the significance of winds on the outage predictions, numerical weather simulations of 161 

selected major storm events were evaluated against wind speed observations using data from 162 

airport stations provided by the National Centers for Environmental Prediction (NCEP) ADP 163 

Global Upper Air and Surface Weather Observations (NCEP/NWS/NOAA/USDC 2008). 164 

Specifically, wind speed at 10 m above ground is compared to modeled wind speed taken at the 165 

gridded location of each airport station. The error analysis was performed on the data pairs 166 

(WRF and NCEP ADP stations) of 10 m sustained wind speed (SWS) time series and the 167 

corresponding maximum 10 m sustained wind speed values from each station location. Sustained 168 

wind speed is calculated similarly to the way used in the DPM model, namely, taking a 4 hour 169 

running window that spans the entire duration of the simulated event. Error analysis results are 170 

presented for three major storms: Storm Irene (“Irene”, 2011), Hurricane Sandy (“Sandy”, 2012) 171 

and the Nemo blizzard (“Nemo”, 2013). Details on the statistical metrics, including name 172 

conventions and mathematical formulas, are provided in the Appendix.  173 

The model predictions of sustained wind speed at 10 m above ground have shown acceptable 174 

agreement with the observations. This step was necessary to gain confidence in the numerical 175 

weather prediction of extreme events for northeastern U.S. and use the model data as one of the 176 

drivers of the damage prediction model. Although precipitation was not evaluated in this study, it 177 

is noted that winds and precipitation processes resolved in the model are based upon the same 178 

atmospheric physics, with precipitation imposing added complexity due to microphysical 179 
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processes. Scatter plots of observed versus modeled data show the linear correlation between 180 

calculated and measured horizontal wind fields (Figure 3). The model simulations for Irene and 181 

Sandy exhibit similar patterns with predictions close to observed values. The mean bias (MB) is 182 

low (0.12 - 0.56 ms-1) and the correlation varies from 0.6 to 0.8 depending on the atmospheric 183 

variable (Table 2). Similar performance is seen for the Nemo blizzard, with the only difference 184 

that the model slightly under-predicted the observations (negative MB and NSE) with an overall 185 

high correlation coefficient (0.74) for both wind parameters (sustained and maximum wind). 186 

Among other metrics, the statistical metric denoted as percentage within a fraction of 2 (FAC2) 187 

has been widely used in the atmospheric and air quality modeling community for the evaluation 188 

of predicted values (Astitha et al. 2010, Builtjes 2005, Chang and Hanna 2004, Hendrick et al. 189 

2013). FAC2 uses the multiplicative bias (model/observation) for each model-observation pair 190 

instead of the difference between the values. The percentage within a factor of two shows how 191 

many model-observation pairs are within an acceptable range (predicted values must be between 192 

half and twice the observations, with 1 being the ideal situation).The fraction of SWS within a 193 

factor of 2 for a series of model-observation pairs was 93% for Nemo, 92% for Irene and 70% 194 

for Sandy. The fraction of SWS within a factor of 1.5 was 88% for Nemo, 84% for Irene and 195 

66% for Sandy. This statistical metric is considered more robust than the traditional correlation 196 

coefficient since it is not sensitive to outlier data pairs (high or low) (Chang and Hanna 2004). In 197 

all cases, the model correctly captured the diurnal variation of the wind field in the majority of 198 

the stations (not shown here). In addition, the uncertainty ratio (characterized as the ratio of 199 

standard deviation from modeled to observed fields) in the cases shown herein varies between 200 

1.03 and 1.2 indicating strong similarity in the predicted and observed variability of wind 201 

simulations. Although, precipitation parameters are also used in forcing damage prediction 202 
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model, errors in forecasts of precipitation are not evaluated herein. Precipitation information has 203 

limited contribution to the damage prediction, mainly as an index for enhancing the impact of 204 

severe winds in damage prediction. Future investigations based on more accurate spatial 205 

precipitation data (such as those derived from weather radar) could be used to enhance the use of 206 

precipitation information in damage prediction. 207 

2.3 Seasonal Categorization 208 

Storms were categorized based on their month of occurrence: “warm weather storms” 209 

included storms from June through September, “cold weather storms” included storms from 210 

December through March, “transition storms” occurred in April, May, October and November 211 

(Table 3). The labeling of storms allows this categorical variable to be included in the model. 212 

Each season category has an average leaf index associated with it, and storm characteristics tend 213 

to be more similar per season. For example, trees would hold leaves during warm weather 214 

storms, not during the cold weather storms, and hold some for transition storms. Warm weather 215 

storms tend to be predominately driven by convective and mesoscale processes, while cold 216 

weather storms tend to be predominately driven by synoptic scale processes, and transition 217 

storms can be characterized by either mesoscale or synoptic processes, as well as nor’easters 218 

(Jiménez et al. 2008, Wallace and Hobbs 2006). 219 

2.4 Utility Outages 220 

The response variable in our models was the count of outages per grid cell. Outages are 221 

defined by Eversource as “extended interruptions (>5 minutes) of service to one or more 222 

customers, that usually requires human intervention to restore electric service (Connecticut Light 223 

& Power 2014).” For reference, the median number of outages on a normal day with low wind is 224 

typically around 40. During Hurricane Sandy and Storm Irene each event had >15,000 outages, 225 
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which is equivalent to more than an entire year’s worth of outages caused by one storm 226 

(calculated as total outages divided by median number of outages per day). 227 

Eversource provided detailed records of outages outputted from their Outage Management 228 

System (OMS) for each of the storms we simulated. The OMS records included geographic 229 

coordinates, nearest substation, customers affected, town, regional operating center, date, time, 230 

outage length and circuit affected. In general, analysts should use caution when working with 231 

OMS data, as much as the data inputted by lineman can be erroneous; in an effort to save time, 232 

the lineman may enter the first entry of a dropdown list into a data collection system, even if 233 

incorrect. However, per a personal communication with System Engineering, we were authorized 234 

to delete duplicate records and records with “cause codes” not related to storm damages (i.e. 235 

damage caused by animals or vandalism.) The events that were deleted represented 236 

approximately 5% of all observations.  237 

Eversource does not track outages at individual metered locations; instead they rely on its 238 

customers to notify them of outages. After that, predictive algorithms automatically approximate 239 

the location of the damage to the nearest isolating device (i.e. transformers, fuses, reclosers, 240 

switches). Once the possible outage is recorded into the OMS, a crew is dispatched to find and 241 

repair the damage, and closes out the outage record once restoration is complete. 242 

2.5 Distribution Infrastructure 243 

Eversource provided detailed geographic data about their electric distribution system in the 244 

form of polylines of the overhead distribution lines and point shapefiles of isolating devices and 245 

poles. Although overhead distribution lines and pole locations were provided, these ultimately 246 

were excluded from the model because outages are recorded at the nearest isolating device (and 247 

not the nearest pole). Holding everything else constant, a grid cell with one mile of overhead 248 
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lines and one isolating device will theoretically only have one outage attributed to it, while a grid 249 

cell with one mile of overhead lines and 100 isolating devices will likely have many more 250 

outages attributed to it. Outages can occur anywhere on the overhead lines, and the isolating 251 

device may be of any type. Rather than aggregating the data by isolating device type (i.e. counts 252 

of transformer per grid cell), the total number of all isolating devices was aggregated by grid cell 253 

as a term called “sumAssets”. As the sum of isolating devices increases per grid cell so does the 254 

opportunity that a trouble spot will be recorded simply by virtue of an isolating device to be 255 

there. Overhead line length was not used as a variable in the models directly but was used to 256 

calculate the percentage of land cover around overhead lines per grid cell, which we discuss 257 

next. 258 

2.6 Land Cover 259 

Overhead lines directly interact with the environment that surrounds them. Trees are the 260 

predominant cause of damages to the Eversource distribution system (Connecticut Light & 261 

Power 2014), and vegetation management (colloquially referred to as “tree trimming”) has been 262 

shown to decrease customer outages (Guikema et al. 2006a). Specific trees that have the 263 

potential to damage the overhead lines are referred to as “hazard trees”. The interaction between 264 

trees and overhead lines is inherently localized and complex, and because “hazard tree” data 265 

does not currently exist for Eversource, we investigate whether land cover data surrounding the 266 

overhead lines can be used as a surrogate for grid cells that may have high amounts of “hazard 267 

trees”. Land cover data aggregated by grid cell has previously shown to help generalize models 268 

where utility-specific distribution infrastructure data is not available without significantly 269 

affecting model performance (Quiring et al. 2011).  270 
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Thirty-meter resolution land cover data was attained from the University of Connecticut 271 

Center for Land Use Education and Research (CLEAR). The 2006 Landsat satellite imagery was 272 

processed by CLEAR into various land cover categories (University of Connecticut 2006) of 273 

which coniferous forest, deciduous forest and developed categories were included in the damage 274 

models. To determine the land cover categories around the overhead lines, the overhead lines 275 

were first overlaid with the land cover data. Given that the resolution of the land cover data was 276 

30 m, a point was placed uniformly every 30 m on the overhead lines shapefile and spatially 277 

joined to the land cover data. The counts of points per land cover category were aggregated for 278 

every 2 km grid cell, and the total counts of points per category were then divided by the total 279 

number of points in the grid cell to calculate the percentage of land cover category that 280 

surrounded the power lines in each grid cell. Initially, there was an overwhelming abundance of 281 

developed land cover (> 66%, Table 4) when the count of points was summed per grid cell. We 282 

suspected that roadways might be interfering with our land cover analysis: a typical two lane 283 

road with two shoulders is approximately 48 ft (16 m) (Stein and Neuman 2007) and thus may 284 

constitute >50% of a grid cell. To counteract this phenomenon, a 60 m buffer was drawn around 285 

the overhead lines and points were uniformly placed every 30 m. Table 4 provides a comparison 286 

of service-territory percentages of land cover categories by using different aggregation methods. 287 

Our analysis shows that overhead lines were mostly located along deciduous forest and 288 

developed areas, and were least likely to be located near wetland areas. Additionally, Figure 4 289 

shows the classification for “developed” land cover around overhead lines, which is most 290 

concentrated in central and coastal Connecticut. 291 
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3. Models 292 

3.1 Overview 293 

Three decision tree models (decision tree, random forest, boosted gradient tree), with full and 294 

reduced datasets, and an ensemble decision tree that uses as input the predictions from the three 295 

decision tree models, were evaluated to determine which combination of method and data would 296 

yield the best damage predictions on the Eversource electric distribution network in Connecticut. 297 

The reduced subset consisted of only the weather variables, while the full model consisted of the 298 

weather variables along with infrastructure and land cover variables (Table 5). Models ending 299 

with an “A” subscript refer to models that use the reduced set of variables (i.e. “Model DTA” is a 300 

decision tree model using the reduced dataset), and models with a “B” subscript refer to models 301 

that use the full set of variables (i.e. “Model DTB” is a decision tree model using the full dataset). 302 

Although variable importance is interesting and has been investigated by other papers (Davidson 303 

et al. 2003, Nateghi et al. 2014a), our focus is the predictive accuracy of the models, so we will 304 

not include a section on variable importance. 305 

3.2 Decision Tree Regression (DT) 306 

The decision tree regression (DT) model, as described by Breiman et al. (1984), was the 307 

simplest model evaluated in this study and was selected because it is among the easiest of models 308 

to interpret and apply. A decision tree is a collection of logical “if-then” statements (called 309 

“branches”) that relates explanatory variables (i.e. wind gust, wind duration above a threshold, 310 

etc.) to a response variable (i.e. outages) by recursively partitioning the explanatory variables 311 

into bins (called “leaves”) that minimize the sum of square error (SSE). Recursive partitioning 312 

can either be an interactive process with the analyst selecting which splits should occur, or an 313 

automatic process that uses a stopping criterion (i.e. a node reaching purity (SSE = 0) or a 314 
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decrease in the validation R2) to grow the tree. Although not required, pruning can improve the 315 

robustness of a decision tree model by removing extraneous leaves.  316 

3.3 Random Forest Regression (RF) 317 

Random forest regression (RF), also described by Breiman (2001), is an extension of the 318 

decision tree model that tends to yield more robust predictions by stretching the use of the 319 

training data partition. Whereas a decision tree makes a single pass through the data, a random 320 

forest regression bootstraps 50% of the data (with replacement) and builds many trees (as 321 

specified by the analyst). Rather than using all explanatory variables as candidates for splitting, a 322 

random subset of candidate variables are used for splitting, which allows for trees that have 323 

completely different data and different variables (hence the term random). The prediction from 324 

the trees, collectively referred to as the “forest”, are then averaged together to produce the final 325 

prediction. One hundred trees were included in our random forest model, with six terms sampled 326 

per split, a minimum of ten splits per tree, and a minimum split size of 256. 327 

3.4 Boosted Gradient Tree Regression (BT) 328 

Boosted gradient tree regression (BT), a common model used in ecology (Kint et al. 2012) 329 

and in business analytics (Pittman et al. 2009), is a set of large additive decision trees built by 330 

building a series of small trees on the residuals of the previous trees (SAS Institute Inc. 2013). 331 

The small trees, also known as “decision stumps” because of their limited depth (e.g. splits per 332 

tree), are considered “weak learners”. While the first small trees are not very useful, or 333 

interesting on their own, the collection of small trees built on residuals of the previous small 334 

trees that can become a sophisticated predictive model. As more layers are added to the tree, the 335 

contribution from each small tree is regulated via a “learning rate”. As the depth of the tree 336 

increases, the sum of predictions becomes more accurate while the additive tree becomes 337 
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increasingly complex. Our boosted gradient tree was initialized with a learning rate of 0.1, fifty 338 

layers and three splits per tree. 339 

3.5 Ensemble Decision Tree Regression (ENS) 340 

Lastly, an ensemble decision tree regression (ENS) was investigated to determine if the 341 

predictions from the decision tree, random forest and boosted gradient tree regression could be 342 

used to predict storm damages better than the simple average of all models or any model alone. 343 

The ensemble decision tree can be likened to asking three different people what they expect the 344 

damage to be from a storm, and to then fit a model based on their predictions (one method may 345 

better predict extreme damage; and a separate method may better predict low or no damage); any 346 

number of these scenarios can be accounted for in the framework of the ensemble decision tree 347 

regression. 348 

3.6 Model Validation  349 

3.6.1 Repeated Random Holdout 350 

Model validation on out-of-sample data is used to test the predictive accuracy of the model, 351 

and as such, only model validation results will be presented in this paper. There are many ways 352 

to look at model validation (repeated holdout, k-fold, stratified k-fold, leave-one-storm out 353 

validation). A 10-times repeated random holdout was conducted using 2/3 of the data as training 354 

and 1/3 of the data as validation. One drawback of the repeated holdout exercise is that some 355 

data may be used for validation exclusively while other data are used only for model training. 356 

We completed an analysis (not shown here) and found that more than 97% of observations were 357 

used for model validation at least once, and of those 97% of observations, each was used an 358 

average of 3.09 times (std. dev = 1.38). Given the small number of covariates (26) relative to the 359 

large data record size (>250,000 records), the large size of the validation partition (33% relative 360 
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to the 10% or 20% used in other studies), and the overall coverage of available observations 361 

(97% observations were used on average 3 times for validation), we believe this represents a fair 362 

validation of our models.  363 

We conducted our repeated random holdout as follows: of the >250,000 records in our 364 

database (2,851 grid cells for each of the 89 storm events), 2/3 of the data was used for training 365 

and 1/3 was used for validation. For fair comparison, the same training and validation partitions 366 

were used to evaluate each of the eight model combinations. Below we discuss the different 367 

models used in this study. Each of the eight models was built on the training data and used to 368 

predict the holdout data which was used for validation. The error metrics were calculated for 369 

each model in the validation partition, then the training and validation were recombined and the 370 

random holdout process was repeated a total of 10 times. 371 

3.6.2 Definition of Accuracy Metrics 372 

Outage predictions are aimed to inform emergency preparedness about the 1) total number of 373 

storm outages upon which a utility can decide on the number of crews needed to repair damages  374 

and 2) the spatial distribution of those outages so that they know where to place crews before a 375 

storm. To evaluate the model’s predictive accuracy relative to these utility-specific needs, we 376 

opted to decouple the magnitude (count of outages) and spatial (distribution of outages) 377 

evaluations of each model. We next present two subsets of metrics to explore the magnitude and 378 

spatial accuracy of the trouble spot predictions to compare the eight different models we 379 

evaluated separately.  380 
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The absolute error (AE) per storm measures the accuracy of the predictions aggregated by 381 

storm.  It was calculated by taking the absolute value of the difference between the actual (𝜃) and 382 

predicted (𝜃𝑜) predicted outages per storm (Equation 1).  383 

𝐴𝐸 =  |𝜃 − 𝜃𝑜|   (Eqn. 1) 384 

Similarly, the percentage error (PE, Equation 2) per storm per holdout sample is calculated 385 

by dividing the absolute error by the corresponding actual outages per storm. AE and APE values 386 

that are 0 are perfect, while anything greater than 0 is considered less than perfect. 387 

𝐴𝑃𝐸 =  
|𝜃−𝜃𝑜|

𝜃
   (Eqn. 2) 388 

The four metrics calculated based on the above error definitions include: i) mean absolute error 389 

(MAE), ii) median absolute error (MdAE), iii) mean absolute percentage error (MAPE), iv) 390 

median absolute percentage error (MdAPE). The mean and median AE or PE of each model can 391 

be calculated by taking the mean (median) of the distribution of AE or PE across all holdout 392 

samples, respectively (89 storms times 10 holdout samples equals 890 values for mean and 393 

median to be calculated). 394 

It’s worth noting that most outage models in the literature use MAE per grid cell as the 395 

metric to evaluate model performance – given that our storms represent a variety of sizes and 396 

severities (from 20 to 15,000 outages), we consider it appropriate to present error metrics by 397 

storm rather than by grid cell. To compare our models to other hurricane outage models in the 398 

literature, we will present MAE per grid cell to evaluate Storm Irene and Hurricane Sandy in 399 

Section 5.  400 
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To evaluate the spatial accuracy of the predicted outages we calculated the proportion of 401 

actual outages by town. For each storm and model, the actual outages per town were divided by 402 

the total actual outages across the service territory per storm. Additionally, we created 403 

corresponding proportions for the predicted outages. We then calculated the Spearman’s rank 404 

correlation coefficient, rs, between these proportions for each holdout sample (resulting in 10 405 

unique rs values per model, which we presented as boxplots in Section 4.1.2). To ensure that 406 

correlation was not a scale dependent phenomenon, we also created proportions for AWCs and 407 

calculated Spearman’s rank correlation coefficient for each holdout sample.  Although our model 408 

predicts outages per 2-km grid cell, towns and AWCs are natural aggregations for correlation 409 

because these are the geographic units by which Eversource allocates crews and resources. As 410 

mentioned earlier, Eversource is divided into 149 towns which are grouped into 18 AWCs (note 411 

that not all AWCs have the same number of towns or geographic boundary). We expect the rs to 412 

be improved for AWCs over towns because of the aggregation.  413 

  Spearman’s correlation is a nonparametric test for determining the strength of the 414 

relationship between variables and is more resilient to outliers than Pearson correlation (Wilks 415 

2011); Spearman’s correlation is the Pearson correlation computed using the ranks of the data. 416 

The two assumptions required for Spearman correlation are 1) variables are measured on ordinal, 417 

interval or ratio scale, and 2) a monotonic relationship between the variables. We chose to use 418 

Spearman instead of Pearson because the distribution of proportion of actual outages per town 419 

and AWC was skewed right, whereas the distribution of the predicted proportion of outages was 420 

normally distributed. Spearman’s rank correlation coefficients that are close to 1 have a strong 421 

positive relationship (though not necessarily linear), values close to 0 have no relationship, and 422 

values close to -1 have a strong negative relationship (though not necessarily linear). 423 
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In addition to the spatial correlation error metric, we used maps to qualitatively compare the 424 

spatial accuracy of model predictions to actual outages for two of the largest and most impactful 425 

events in our database (Irene and Sandy, Section 5). We will also present maps of the MAE and 426 

MdAE per town of our best overall model, Model ENSB, in Section 4 (computed as the mean and 427 

median of the AE per town from all 10 holdout samples). 428 

4. Results 429 

4.1 Model Validation Results 430 

4.1.1 Magnitude Results 431 

In this section, we will present the storm-wise results from each holdout (i.e. 89 storms times 432 

10 holdouts equals 890 validation points were used to create each graph). Figure 5 shows 433 

boxplots of the absolute error and percentage error per storm for all holdouts. Note that diamond 434 

symbols on Figure 5 represent the mean absolute error (MAE) and mean absolute percentage 435 

error (MAPE), and the thick black lines represents the median absolute error (MdAE) and 436 

median percentage error (MdAPE), respectively. The MAPE values are skewed for all models 437 

due to over-prediction of smaller storm events. For example, a storm with 20 actual outages can 438 

be off by 500% if 100 outages are predicted for that storm. In addition, the MAE values are 439 

skewed for all models due to the errors from predicting the largest storm events (hurricanes, 440 

which can be up to two orders of magnitude larger than other events in our database). 441 

Though the meaning of MdAE and MdAPE is different than MAE or MAPE, we believe the 442 

MdAE and MdAPE are better metrics for model evaluation than MAE and MAPE because the 443 

median is a good representation of the center of the distribution. Table 6 shows MdAE and 444 

MdAPE for each model by season. Cold weather storms (storms occurring between December 445 
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and March) had both lowest MdAE and MdAPE values, and transition storms tended to have 446 

slightly improved MdAPE than warm weather storms, and had similar MdAE values. Though 447 

beyond the scope of this paper, we believe that cold weather storms might be easier to predict 448 

than warm weather or transition storms because the trees have lost their leaves and the soil is 449 

generally frozen during these months, so most damage is associated with wind effects. Model 450 

ENSA had the lowest MdAE, MdAPE, MAE, and MAPE values, and so we can say with respect 451 

to magnitude that it was the best performing model. Model ENSB had a similar, slightly less 452 

improved performance than Model ENSA; it also had a slightly wider interquartile range (IQR) 453 

and higher MAE, MAPE, MdAE and MdAPE values. If desired, the first and third quantiles (Q1, 454 

Q3) of the AE and PE can be read from Figure 5.  455 

4.1.2 Spatial Accuracy Results 456 

In this section, we will present the rs values for all towns or AWCs for each holdout (recall 457 

that each boxplot in Figure 6 was constructed from 10 rs values, one for each holdout sample). 458 

Figure 6 shows the values for rs for each model and holdout sample for both towns and AWCs. 459 

As mentioned earlier, we prefer to use proportions rather than actual values in order to evaluate 460 

the accuracy of the model to predict the spatial distribution of outages (even if the territory-total 461 

predicted number of outages is over or underestimated). The range of rs values for the different 462 

models was between 0.2 and 0.5 (p-value <0.001), which indicates a weak positive correlation 463 

between observed and predicted proportions of outages in each town and AWC for each model. 464 

As expected, rs increased for each model when aggregating from towns to AWCs. The mean 465 

value of rs across all holdout samples is close to the median (Figure 6). These rs values can be 466 

interpreted as follows: when the proportion of predicted outages increases, so does the actual 467 

proportion of outages, which implies that there is spatial accuracy (albeit, weak spatial accuracy 468 
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overall).  The model with the best distribution of rs values was Model ENSB, which had the 469 

highest values for both town and AWC spatial scales of aggregation. Interestingly, Model RFB 470 

had similar spatial correlation to Model ENSB, which may imply that Model RFB may also be 471 

used to forecast the spatial distribution of damages; however this model was shown to exhibit 472 

stronger biases in the total magnitude of outages. 473 

4.3 Selecting the best overall model 474 

In an operational context, we believe that all models should be considered to represent the 475 

range of possible outage scenarios. However, utilities need to select the most likely scenario 476 

during decision-making, which will be based on the performance of the models in terms of both 477 

magnitude and spatial accuracy metrics. We believe that Model ENSB was the best model in the 478 

overall evaluation because of its combination of spatial accuracy and magnitude metrics. For 479 

brevity, we will only explore the magnitude error metrics for Model ENSB as we have already 480 

discussed that all models have weak positive spatial correlation. Figure 7 shows the actual vs. 481 

predicted outages per storm by season; Figure 8 shows how storm percent error decreases and 482 

absolute error increases as a function of storm severity. In order to show where the model tends 483 

to have the most error, we also present the MAE and MdAE per town (Figure 9).  Note how the 484 

model tended to have the highest MAE and MdAE in areas that have the highest population 485 

(central and coastal Connecticut) and highest “developed” land cover around overhead lines 486 

(Figure 4); less populated areas tended to have less MAE and MdAE per town, which may be a 487 

function of having less customers, less isolating devices or better vegetation management 488 

practices.  However, further research is needed to understand why some areas are more resilient 489 

than other areas. 490 
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5. Predicting Outages for Hurricanes 491 

Hurricanes are among the most costly, disruptive and serious of all storm events to impact 492 

electric distribution networks. Though significant, hurricanes represented only two of the 89 493 

storms in our database. If the damage before a hurricane could be accurately forecasted, then 494 

emergency-preparedness efforts could be vastly improved by deploying restoration crews and 495 

supplies ahead of a hurricane’s land fall. We next compare the simplest model (DTA) with our 496 

most sophisticated model (ENSB) to show how model and data forcing complexity might 497 

influence hurricane outage predictions. 498 

Figure 10 shows the distribution of average outages per town across all 10 holdout samples of 499 

Irene and Sandy for actual data vs. model DTA and model ENSB outage predictions. On average, 500 

Irene predictions were underestimated 10.2% by model DTA (463 outages) and 11% by model 501 

ENSB (498 outages). On average, Sandy was underestimated 1.7% (80 outages) by model DTA 502 

and overestimated 4.4% by model ENSB (212 outages). While both models are shown to 503 

accurately predict the aggregate total number of outages for the two hurricane storm events, 504 

model ENSB was superior in predicting the spatial distribution of these outages, especially for 505 

the towns that were hardest hit (Figure 10). As a complement to the actual and predicted outage 506 

maps, Figure 11 shows a scatterplot of the holdout averages for comparison of actual and 507 

predicted values from the average of all holdout samples for Irene and Sandy. The improved 508 

spatial accuracy of model ENSB renders the model useful as an input for other related models 509 

such as a storm restoration duration model or customer outage model because it correctly 510 

predicts the worst hit areas. 511 
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6. Discussion 512 

In this section, we will address the investigative questions we asked at the beginning of 513 

this paper. Regarding weather-only outage models and the value of added utility-specific data, 514 

we conclude that a reasonably performing outage model to predict outages for the entire service 515 

territory can be developed without additional utility data so long as actual outage locations are 516 

available for historic events. Similar to (Han et al. 2009b), our model tended to overestimate in 517 

the most populated (urban) areas; and similar to Nateghi et al. (2014a), our simpler weather-only 518 

model (ENSA) exhibited similar (even slightly better) magnitude metrics to the corresponding 519 

utility-specific model (ENSB). Consequently, there is an opportunity to readily expand the 520 

models presented in this study to other utilities that are within the inner 2-km weather 521 

simulations domain (Figure 2), which includes utilities in Massachusetts, New Hampshire, New 522 

York, New Jersey and Rhode Island, so long as historic outage data are available for the 523 

simulated storm events. An additional benefit of our models is that they can be used for different 524 

storm types from different seasons, which is represented by the error metrics determined for 525 

many different storms. It was shown that the models predicted best the cold weather storm 526 

events, which may attributed to trees having lost their leaves and frozen soil, so most damage is 527 

caused by wind. Although cold weather storms were predicted best, recall that our paper 528 

excludes ice storms which are among the most damaging storms for electric distribution 529 

networks (Liu et al. 2008). The higher MdAE and MdAPE values were shown for the convective 530 

warm weather storms, which are the most difficult to predict with numerical weather models due 531 

to their short timescale and localized nature.  532 

These “weather-only “outage models can be valuable tools for utilities in the short term 533 

that can be used until data becomes available to build more mature models. The limitation of 534 
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weather-only outage model is that they cannot account for dynamic conditions of the distribution 535 

network; such as system hardening improvements (Han et al. 2014), the topology of the network 536 

(Winkler et al. 2010), or vegetation management (Guikema et al. 2006b, Nateghi et al. 2014a, 537 

Radmer et al. 2002). The benefit of the added utility data was that it had higher spatial accuracy 538 

than the weather-only models. Our storms exhibited weak positive correlation between actual 539 

and predicted proportion of outages. Model ENSB had a mean correlation (rs = 0.37 for towns, rs 540 

= 0.45 for AWCs) that is similar to other correlation values found in the literature (Angalakudati 541 

et al. 2014), though they compute correlation for actual vs. predicted outages (not proportions) at 542 

“platforms”, which are similar to Eversource’s AWCs. 543 

We now compare model ENSB to other existing models in the literature. Given that most 544 

of the literature focuses on hurricanes, so follows our discussion. Many hurricane outage papers 545 

have reported the MAE per grid cell across all storms evaluated, which we calculated from the 546 

grid cell predictions from all 10 holdout samples for Irene and Sandy. For model ENSB the MAE 547 

per grid cell was 3.13 outages (std. dev. = 4.4 outages) for Irene and 3.15 outages (std. dev. = 4.9 548 

outages) for Sandy. These are comparable error magnitudes to those presented in other papers - 549 

Nateghi et al. (2014a) used a random forest model and reported MAE per grid cell values 550 

between 0.26 and 2.24 depending on which State they modeled; Han (2009a) used generalized 551 

additive models and reported MAE per grid cell values between <0.001 – 72 outages depending 552 

on the hurricane that was predicted (however, MAE per grid cell values were tabulated as 553 

function of the actual number of outages, which made it difficult to do a direct comparison).  554 

With respect to storm totals, our outage models predicted Storm Irene within 5% and Hurricane 555 

Sandy within 11%, which is similar to other hurricane outage models (Winkler et al. 2010). 556 

However, direct comparison of our results must be taken with caution: our northeastern US 557 
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service territory has different environmental and infrastructure attributes than Gulf Coast 558 

utilities, and we are not using the same storms for evaluation (our average size hurricane caused 559 

>15,000 outages compared to the Han et al. (2009a) data, in which the average hurricane caused 560 

6,169 outages).  561 

7. Conclusions 562 

We have investigated the performance of four types of models with two different subsets of 563 

data to determine what combination of data and method yields the best prediction of outages to 564 

Eversource’s electric distribution network in Connecticut. Of the eight models evaluated, an 565 

ensemble decision tree regression (ENSB) forced with predictions from decision tree, random 566 

forest and boosted gradient tree regressions proved to be the best model overall. The ensemble 567 

decision tree regression modeling framework could be implemented operationally to predict 568 

future weather-related threats to the distribution system (as well as other types of critical 569 

infrastructure such as water or gas distribution systems). Now that outages can be forecasted in 570 

anticipation of a storm event, other models could be built from our predictions such as a 571 

customer outage model or an outage duration model. Should data become available, this 572 

modeling framework lends itself to the inclusion of vegetation management (e.g. tree trimming) 573 

and “hazardous tree” data. Further, other utility-specific data, such as conductor material and 574 

circuit type (backbone or lateral), may prove important to future models. Although all electric 575 

distribution networks are relatively unique (i.e. each utility has different topology, different tree 576 

species that interact with overhead lines and different vegetation management strategies), we 577 

believe this model can be applied elsewhere as long as the necessary outage data is available. 578 

 579 
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List of Figures 736 
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Figure 1: Service territory of Eversource denoting the town and area work center (AWC) boundaries. 774 
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 779 

Figure 2: Nested grids of Weather Research and Forecasting model used to simulate the storm events; the Eversource service territory 780 

is within the highest (2 km) model grid resolution. 781 

 782 

 783 
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 784 

Figure 3: Scatter plots of 10m (m s
-1

) sustained wind speed (top plot) and corresponding max values at each station location (bottom 785 

plot) from WRF simulations versus METAR observations. Left panels: Hurricane Irene; Middle panels: Hurricane Sandy; Right 786 

panels: NEMO blizzard. The 45 degree line (1:1 linear relationship) is added in all plots.  787 
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Figure 4: Percentage of developed lines per grid cell using 60m buffer classification/aggregation. 792 

 793 
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 794 

  795 

Figure 5: Boxplots of absolute error (left) and percentage error per storm by model for all 10 holdouts. Diamonds represent mean 796 

values (MAE and MAPE) and bold horizontal lines indicate median values (MdAE or MdAPE) per model.797 
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 798 

Figure 6: Boxplots of Spearman’s rank-order correlation coefficient for each of the 10 holdout samples, computed by town (left) and 799 

AWC (right). Diamonds represent mean values and bold horizontal lines indicate median values. 800 
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 801 

 802 

Figure 7: Total number of actual vs. predicted outages over the validation grid cells for model ENSB with seasonal grouping for all 803 

holdout samples, with 45 degree line. 804 
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 806 

Figure 8: Absolute (left) and percentage (right) error per storm of model ENSB for all 10 holdouts as a function of magnitude. 807 

 808 

 809 
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 810 

Figure 9: Mean absolute error (left) and median absolute error (right) per town of model ENSB for all 10 holdouts as a function of 811 

magnitude.812 
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 813 

 814 

Figure 10: Maps of actual vs. predicted outages per town for Irene and Sandy for models DTA and ENSB. 815 
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 816 

Figure 11: Scatterplots of actual vs. predicted outages per town for Storm Irene and Hurricane Sandy, with 45 degree line. 817 
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Table 1: Explanatory data included in the models. 818 

Variable  Abbreviation Description Type Units 

Season seasoncat Weather Categorical - 

Duration of wind at 10 meters above 9 m/s wgt9 Weather Continuous hr 

Duration of wind at 10 meters above 13 m/s wgt13 Weather Continuous hr 

Duration of wind at 10 meters above 18 m/s wgt18 Weather Continuous hr 

Duration of wind gusts above 18 m/s ggt18 Weather Continuous hr 

Duration of wind gusts above 27 m/s ggt27 Weather Continuous hr 

Duration of wind gusts above 36 m/s ggt36 Weather Continuous hr 

Duration of wind gusts above 45 m/s ggt45 Weather Continuous hr 

Total accumulated precipitation* TotPrec Weather Continuous mm 

Wind stress* Wstress Weather Continuous unitless 

Wind gust* Gust Weather Continuous m/s 

Wind at 10 m height* Wind10m Weather Continuous m/s 

Snow water equivalent* SnoWtEq Weather Continuous kg/kg 

Soil moisture* SoilMst Weather Continuous mm/mm 

Precipitation Rate* PreRate Weather Continuous mm/hr 

Sum of Assets sumAssets Infrastructure Continuous count 

Percent Developed PercDeveloped Land Cover Continuous % 

Percent Coniferous PercConif Land Cover Continuous % 

Percent Deciduous PercDecid Land Cover Continuous % 

*variables have both mean and maximum values, there are 26 unique variables used in the models 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 
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Table 2: Statistical metrics from the WRF evaluation against the METAR station data. 828 

  RMSE MB MAE R NSE 

Irene SWSa  2.28 0.12 1.68 0.81 0.52 

(103/3001)b Max SWS  2.89 0.39 2.16 0.60 0.01 

Sandy SWS 2.57 
0.53 

1.85 0.73 0.36 

(102/4159) Max SWS 3.15 
0.56 

2.34 0.63 0.06 

Blizzard SWS 2.12 -0.69 1.68 0.73 0.40 

(103/4495) Max SWS 3.00 -1.78 2.54 0.74 -0.11 

a SWS=sustained wind speed, m/s 829 
b Values in parenthesis: (No. of stations/No. of observation-model pairs for SWS) 830 
 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 
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Table 3: Number of storms per season  842 

Type Number of Storms Percentage of Total 

Warm 

weather 

38 43% 

Cold 

weather 

25 28% 

Transition 24 27% 

Hurricane 2 2% 

Total 89 100% 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

  850 

 851 

 852 

 853 

 854 

 855 

 856 
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Table 4: Land use changes for variables classification/aggregation methods. 857 

Land Cover Class Grid Average 
Directly on  

Circuit 
60m Buffer 

Developed 5.8% 66.3% 21.7% 

Turf & Grass 20.5% 7.8% 16.3% 

Other Grasses 4.7% 0.8% 1.9% 

Agriculture 12.0% 2.7% 8.4% 

Deciduous Forest 29.9% 17.9% 40.1% 

Coniferous Forest 10.9% 2.2% 5.6% 

Water 3.1% 0.4% 2.0% 

Non-forested 

Wetland 
1.1% 0.1% 0.2% 

Forested Wetland 8.5% 0.7% 2.1% 

Tidal Wetland 0.4% 0.1% 0.3% 

Barren Land 2.3% 0.5% 1.0% 

Utility ROWs 0.8% 0.5% 0.3% 

 858 

 859 

 860 

 861 

 862 

 863 
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Table 5: Description of the evaluated models. 864 

Model Description 

Model DTA Decision tree model with only weather data 

Model RFA Random forest model with only weather data 

Model BTA Boosted gradient tree model with only weather data 

Model ENSA Ensemble decision tree inputted by models DTA, RFA, and BTA 

Model DTB Decision tree model with weather, infrastructure and land cover data 

Model RFB Random forest model with weather, infrastructure and land cover data 

Model BTB 
Boosted gradient tree model with weather, infrastructure and land cover 

data 

Model ENSB Ensemble decision tree inputted by models DTB, RFB, and BTB 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 
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Table 6: Median absolute error (MdAE, outages) and median absolute percentage error (MdAPE, %) by season and model. 873 

Metric Season DTA RFA BTA DTB RFB BTB ENSA ENSB 

MdAE  Transition 88 82 125 97 84 116 54 64 

MdAE Cold  52 59 103 67 66 105 32 39 

MdAE Warm  85 92 100 91 101 102 72 83 

MdAPE Transition 46.7% 43.5% 54.0% 49.8% 44.9% 52.1% 29.8% 32.0% 

MdAPE Cold  33.4% 33.7% 47.6% 39.4% 41.7% 49.1% 23.5% 30.9% 

MdAPE Warm  45.3% 48.0% 56.4% 52.5% 50.6% 57.2% 35.1% 38.7% 

          

          

          

 874 

 875 

 876 

 877 
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APPENDIX 878 

The statistical metrics used in the model evaluation analysis are presented below. The modelled 879 

wind speed is represented by M, the observed wind speed by O and N is the total number of data 880 

points used in the calculations. 881 

 Root Mean Square Error (RMSE):  882 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑀 − 𝑂)2

𝑁

 883 

 Mean Bias (MB):  884 

𝑀𝐵 =
1

𝑁
∑(𝑀 − 𝑂)

𝑁

 885 

 Mean Absolute Error (MAE):  886 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑀 − 𝑂|

𝑁

 887 

 Correlation Coefficient (R):  888 

𝑅 =
∑(𝑀 − �̅�)(𝑂 − �̅�)

√∑(𝑀 − �̅�)2 ∑(𝑂 − �̅�)2
 889 

 Nash-Sutcliffe efficiency (NSE):  890 

𝑁𝑆𝐸 = 1 −
∑(𝑂 − 𝑀)2

∑(𝑂 − �̅�)2
 891 

 892 

 Percentage within a factor of 2 or 1.5 (FAC2, FAC1.5): 893 

𝐹𝐴𝐶2 = 0.5 ≤
𝑀

𝑂
≤ 2, 894 

 895 

 𝐹𝐴𝐶1.5 = 0.5 ≤
𝑀

𝑂
≤ 1.5 896 

 897 

 898 


