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ABSTRACT 

Electric distribution utilities have an obligation to inform the public and government regulators about 

when they expect to complete service restoration after a major storm. In this study, we explore methods for 

calculating the estimated time of restoration (ETR) from weather impacts, defined as the time it will take 

for 99.5% of customers to be restored. Actual data from Storm Irene (2011), the October Nor’easter (2011) 

and Hurricane Sandy (2012) within the Eversource Energy-Connecticut service territory were used to 

calibrate and test the methods; data used included predicted outages, the peak number of customers 

affected, a ratio of how many outages a restoration crew can repair per day, and the count of crews 

working per day. Data known before a storm strikes (such as predicted outages and crews available) can be 

used to calculate ETR and support pre-storm allocation of crews and resources, while data available 

immediately after the storm (such as customers affected) can be used as motivation for securing or 

releasing crews to complete the restoration in a timely manner. Used together, these methods will help 

utilities provide a reasonable, data-driven ETR without relying solely on qualitative past experiences or 

instinct. 
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I.  INTRODUCTION 

The economic loss from power outages in the United States is estimated to be between $20 and $55 billion 

annually (Campbell 2013). Outages have direct and indirect consequences for businesses, government and 

social services (Castillo 2014; Sullivan 1996); all of which require a reliable estimated time of restoration 

(ETR) in order to mitigate loss and prepare to resume normal activities when power returns (Campbell 2013). 

In Connecticut, where we focus our study, the interaction of trees with the overhead lines during severe wind 

is a major cause of outages on the electric distribution network (Connecticut Light & Power 2014). Trees 

are especially problematic for power restoration activities because they can break poles and overhead 

equipment, become tangled in the conductors, and block roads (McGee et. al 2012). When restoring power, 

utilities must balance individual customer needs with the needs of the community at large. The typical 

priority of restoration activities by electric utilities is as follows: (i) “make safe” activities to support 

emergency services (i.e. police, fire, medical), (ii) power plants, transmission lines and substations are 

repaired in parallel, (iii) areas with large number of customers affected, and then (iv) individual customers 

(Edison Electric Institute 2014). More details on restoration activities following power failures, from 

restarting tripped generators to restoring unserved load, can be found in Castillo (2014) and Ancona (1995). 

 

There have been many different approaches to ETR modeling, including by storm (Reed 2008), feeder 

(Brown et. al 1997) or individual outage location (Nateghi et. al 2014a,b). As noted by Nateghi et. al 

(2014b), many existing ETR models have been designed in such a way that their predictive accuracy could 

not be tested (Brown et. al 1997, Davidson et. al 2003, Reed 2008). There has been much research into 

using public versus proprietary weather data for outage modeling (Nateghi et. al 2014a), as well as 

research into how weather conditions can influence outage duration (Davidson et. al 2003, Nateghi et. al 

2011). While Davidson et. al (2003) found that wind and precipitation variables did not contribute to the 

duration of individual outages during hurricanes in the Carolinas, Nateghi et. al (2014b) showed that 

weather variables alone can explain the duration of individual outages in Gulf States. However, a main 
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limitation of these previously mentioned studies is that the number of crews working were not considered 

when modeling the individual outage durations. Other studies, such as Ouyang and Duenas-Osorio (2014), 

have incorporated the time-varying number of crews and restoration sequence into their ETR models, 

along with differing restoration strategies for various entities (i.e. power plants, critical facilities, regular 

customers). 

 

In this study, we provide guidance on how to calculate ETR as a function of outage, customer and crew 

data. We first present an analysis of how a utility restored power during three major events: Storm Irene 

(2011), the October Nor’easter (2011) and Hurricane Sandy (2012). We then compare how an “outage-

driven model” (e.g. using outage predictions or actual outage counts) and a “customer-driven model” (e.g. 

using affected customer meters to back-calculate potential outages) would predict ETR during these events 

for the Eversource service territory. While outage-driven models can be useful for pre-staging crews if they 

rely on outage prediction model (Guikema et. al 2014, Wanik et. al 2015, He et. al 2016), the customer-

driven model serves an independent, complementary and real-time method that can be used by any utility 

that tracks the peak customers affected during a storm event. The use of both the outage-driven and customer-

driven ETR models allows Emergency Managers at electric utilities (e.g. employees responsible for 

calculating required recourses, procuring, and managing crews during natural and man-made emergencies) 

to (a) stage crews and resources before a storm arrives by using the outage prediction model (if available), 

and (b) to make adjustments, if necessary, from the peak customer affected information. In addition to point 

estimates, we also suggest a robust method for calculating an upper and lower bound around the predicted 

ETR that is a function of past crew behavior. 

 

II.  DATA DESCRIPTION 

Our study area (Figure 1) was the Eversource Energy (“Eversource”) service territory in Connecticut, 

which serves 149 of 169 towns of the state. We focus our study on three major events that impacted this 
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region: (1) Storm Irene (“Irene”, 2011) which had >15,000 outages, 671,000 peak customers affected, and a 

10 day restoration; (2) the October Nor’easter (“the Nor’easter”, 2011) which had >26,000 outages, 807,000 

peak customers affected, and an 11 day restoration; and (3) Hurricane Sandy (“Sandy”, 2012) which had 

>16,000 outages, 496,000 peak customers affected and a 9 day restoration. Note that peak customers affected 

are the customer electric meters themselves, and not the people they serve (e.g. an individual meter can serve 

many members of a household or business). 

 

A.  Outage Variables 

Outages are defined as locations that require a two-man restoration crew to manually intervene and restore 

power (Connecticut Light & Power 2014), which are recorded at the nearest upstream isolating device to the 

fault (i.e. snapped conductor, broken pole). It is essential to have an accurate estimate of the outages needing 

repair following a storm in order to calculate the ETR for a service territory. However, a considerable 

problem that Emergency Managers face is that the total number of outages during storm is not known until 

all outages have been repaired, as outages may be recorded over multiple days as they are discovered by 

crews or called in by the public. Figure 2a shows the number of outages that were fixed per day during each 

of the three storms. 

 

Outage prediction models (OPMs) at electric distribution utilities, which rely on weather and geographic 

data as inputs to predict outages, can provide estimated counts of outages in advance of a storm and can be 

used as justification for pre-storm allocation of crews and equipment (Guikema et. al 2014; Wanik et. al 

2015; He et. al 2016; Wanik et al. 2017a,b). Some outage prediction models have been calibrated based on 

utility-specific data (Mensah and Duenas-Osorio 2014, Winkler et. al 2010), while others (Nateghi et. al 

2014a) have used only publicly available data, which can be generalized over regions for which data are 

limited or do not exist (Guikema et. al 2014).  We will later describe an additional source of data that is 
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immediately available during a storm that Emergency Managers can use to inform their decision-making 

(“peak customers affected”, Section IIC.) 

 

B.  Crew Variables 

For each of the three storms, we were provided with additional data on daily maximum crews (“crews”) 

that worked and the total number of outages that were fixed each day by all crews. The maximum number 

of crews differs from the total number of crews working per day, as crews can work at different times during 

the day, afternoon or night shifts. During catastrophic events, utility crews must be called in from around 

the country to help restore power (this is known as “mutual assistance”). Due to competition with other 

utilities for crews along with an individual utility’s response strategy (e.g. proactively ordering crews in 

advance of a storm vs. reactively ordering crews after the storm has passed), there may be a lag before crews 

actually arriving and start working (Figure 2b). Late ordering of crews coupled with excessive travel times 

may prolong the restoration process. From the daily crew and outage data, we can readily calculate the daily 

crew fix rate (“Rate”, Eqn. 1), which is defined as the number of outages fixed per day divided by the 

maximum number of crews that were working that day.  

𝑅𝑎𝑡𝑒 =
𝑂𝑢𝑡𝑎𝑔𝑒𝑠 𝐹𝑖𝑥𝑒𝑑

𝐶𝑟𝑒𝑤𝑠
             (1) 

It is interesting to note that closer to the end of a storm, there was a decrease in the number of crews 

working (Figure 2b). The decision to release crews during a storm can vary for many reasons – including 

regulatory pressure, or deeming that there are excessive crews relative to the amount of outages that need to 

be repaired (Abrams and Lawsky, 2013; Caron et. al 2013). 

 

The rate for each storm and day of restoration is provided in Figure 3a. During major storms, repair rates 

will likely be lower at the onset due to road clearing and emergency “make safe” priorities. Towards the 

end of the storm, one may notice a decrease in crew fix rate. While outages still need to be repaired during 

the “tail” of the storm, there is also a great deal of non-outage work (i.e. tree branch leaning on a pole, 
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sagging conductor, etc.) that needs to be completed and this was excluded from our current study. Another 

contributing factor to lower crew fix rates during the tail of the storm includes increased driving distances 

between outages, which may decrease the crew fix rate due to excessive driving times, but we ignore this 

aspect. We assume that each daily rate is independent and view the rates from the three storms individually 

and collectively (dashed line) as distribution (Figure 3b). From these distributions we can calculate 

probabilities of exceedance, such as the 25th percentile (P25), 50th percentile (P50) and 75th percentile 

(P75) of the rates. We will demonstrate how the rate is essential to calculating an ETR in Sections III and 

IV.  

 

C.  Customer Variables 

Like many electric distribution utilities, Eversource relies on their customers to call, text or use a website 

to alert the utility that they are without power. Eversource tracks these calls and uses predictive algorithms 

to estimate the number of customers without power at any one time. The peak customers affected (PCA) is 

defined as the maximum number of customers (meters) without power during a major storm, and usually 

occurs within the first 24 hours of the storm. The PCA is different from the total number of customers 

affected during the entire storm event, as some customers may lose power multiple times during the storm 

event and be double-counted (Guikema et. al 2014).  We were provided with a historic database that included 

the total number of outages and PCA per storm across 55 storms that impacted the Eversource territory 

between 2007 and 2013 including Irene, the 2011 Nor’easter and Sandy. From these data, we calculated the 

ratio of PCA to outages, resulting in the ratio of peak customers affected per outage (PCAO, Eqn. 2).  

𝑃𝐶𝐴𝑂 =
𝑃𝐶𝐴

𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑎𝑔𝑒𝑠
             (2) 

Figure 4a shows that the total outages and PCA are highly correlated and linearly related. Figure 4b shows 

that while there may be PCAO variability for storms less than 500 outages, the locally weighted regression 

line shows no discernable trend between PCAO and total storm outages. Figure 4c shows the kernel density 
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of PCAO from all storms with the P25, P50, and P75, and these will be subsequently used to convert PCA 

into outage estimates, which can then be used for ETR modeling (see Eqn. 4).  

III.  POINT ESTIMATES 

An ideal scenario would be that outages are predicted perfectly before a storm arrives and that crews work 

at a constant rate. One could then create a model that would relate the number of outages to average number 

of crews working per day and the crew fix rate (Eqn. 3).  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑇𝑅 =
 𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑎𝑔𝑒𝑠

(𝐴𝑣𝑔.  𝐷𝑎𝑖𝑙𝑦 𝐶𝑟𝑒𝑤𝑠×  𝑅𝑎𝑡𝑒)
         (3) 

The results from this model are presented in Figure 5 using the P25, P50 and P75 of the rates from Figure 3 

for specific outage thresholds (e.g. 5,000 – 40,000 outages). Note how wide the contours are for the left 

panel (P25) relative to the right panel (P75) as the faster rates translate into steeper contours and shorter 

restoration times. In this way, if a utility knows the desired ETR (i.e. seven days or 10 days), it can assume 

a certain crew fix rate and estimate the number of average daily crews that must work per day to achieve a 

restoration goal.  

Similarly, updating Eqn. 3 to use PCA and PCAO instead of outages (Eqn. 4), we see that a lower PCAO 

will increase the estimated outages and the number of crews required to achieve a restoration goal. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑇𝑅 =
 (𝑃𝐶𝐴/𝑃𝐶𝐴𝑂)

(𝐴𝑣𝑔.𝐷𝑎𝑖𝑙𝑦 𝐶𝑟𝑒𝑤𝑠×  𝑅𝑎𝑡𝑒)
         (4) 

While valuable, these relationships do not fully account for the uncertainty associated with the restoration 

process. The total number of outages is not known to Emergency Managers until the storm is complete, 

which means that utilities need to rely on outage prediction models or customer data to estimate the total 

outage impacts. In addition, we previously showed that crews do not work at a constant rate during storms 

(Figure 3), which can be a function of outage severity (i.e. broken poles take longer to fix than snapped 

conductors), storm footprint (i.e. damage due to a tornado will limit the number of crews that can work in 

the affected area), and crew management issues (i.e. external crews are unfamiliar with the service territory; 

and the utility may not have work orders ready when crews arrive, resulting in crews waiting instead of 



 9 

working; or roads may be blocked, preventing crews from traveling). To account for these uncertainties, we 

demonstrate how outage and customer data can be used to create ETR prediction intervals. 

 

IV.  PREDICTION INTERVALS 

A.  Outage-Driven ETR Model 

As previously mentioned, some utilities may have an outage prediction model to estimate the number of 

outages before a storm hits (Guikema et. al 2014, Wanik et. al, 2015; He et. al, 2016). During operational 

use of these models, error from a weather forecast can propagate error into the outage predictions. For the 

purpose of proving the concept, we ignore any outage prediction model uncertainties and assume that these 

models can accurately predict outage impacts. To illustrate how the fix rate uncertainty affected ETR 

estimates, we show how using the actual crew staffing per day coupled with three fix rates can provide an 

upper, lower and likely restoration curve. We first present in-sample results that use the P25, P50 and P75 

rates from all three storms (Figure 5), and then present out-of-sample results (Figure 6) that use the rates 

from the two other storms to predict the storm of interest (e.g. Irene is predicted from the Nor’easter and 

Sandy rates; the Nor’easter is predicted from Irene and Sandy rates; Sandy is predicted from Irene and the 

Nor’easter rates). In these plots, the dashed center line represents the P50 of the predicted ETR distribution, 

and the solid lines represent upper and lower predictions from the P25 and P75 of rate distribution, and the 

dots represent the actual outages that are remaining each day. Results (Figure 7) show the P50 fix rate is a 

reasonable predictor of the final ETR for the Nor’easter and Sandy, while Irene’s outages are encapsulated 

by the P50 and upper bound. The out-of-sample results (Figure 8) show that the Nor’easter was encapsulated 

by the lower and P50 bounds, while Irene was outside the upper prediction bounds.  
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B.  Customer-Driven ETR Model 

We now explore how PCA and PCAO can be used to estimate outage impacts which can  then be used for  

calculating ETR (Eqn. 4). We first present in-sample results, where the rate is assumed to be the P50 rate of 

the three storms, the upper and lower bounds are calculated from the P25 and P75 of the PCAO distribution, 

and the actual number of crews working per day during each storm are used. Figure 9 shows that the actual 

outages remaining per day were generally encapsulated for each day and each storm using this method. The 

P50 PCAO gives estimated outages that were close for Irene, while the P25 PCAO (upper bound, more 

conservative) gave better predicted outages for the Nor’easter and Sandy. We also present out-of-sample 

results, where the rates from the two remaining storms are used to predict the storm of interest. To evaluate 

the sensitivity to different rates and outage predictions, we present out-of-sample results where the P25 

PCAO is coupled with the P25 of the fix rate to calculate the upper bound, and the P25 PCAO is coupled 

with the P75 of the rate to calculate the lower bound. In this way, the highest predicted outages (upper bound) 

had the slowest crew fix rate and the lowest predicted outages (lower bound) had the fastest crew fix rate. 

Figure 10 shows the P50 rate and outages still provides an accurate snapshot of the predicted ETR, even 

when the rates from other storms are left to predict the remaining storm.  

V.  DISCUSSION 

We have presented guidance on how to predict ETR at service territory resolution as a function of 

predicted number of outages, peak customers affected, and crews working per day. Both in-sample and 

out-of-sample models exhibited satisfactory results when outages (Figures 5 and 6) or PCA (Figures 7 and 

8) were used. Irene exceeded the upper ETR projection when using actual outage data, but was 

encapsulated by the middle and upper bounds using the PCAO method. The out-of-sample results using 

P50 ETR proved to be within one day of the actual restoration time for Sandy and the Nor’easter using 

both the outage-driven and customer-driven methods. It is important to note that the restorations for Irene 

(McGee et. al 2012), the Nor’easter (McGee et. al 2012) and Sandy (Caron et. al 2013) were all within the 

Department of Energy’s (DOE) industry standards at the time. 
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Using the methods presented in our study, an Emergency Manager retrospectively would have been able 

to forecast that there likely were not enough crews to accomplish a seven day restoration for any of the 

three storms we investigate. We can use the October 2011 Nor’easter as an example. As demonstrated in 

Figure 6c and Section III, we see that even if the crews were working at the P75 rate during each day of the 

Nor’easter, an estimated 1,345 crews would be needed to restore power in seven days compared to the 

1,068 crews that were actually working. Using the outage-driven model as described in Figure 8 and 

Section IVA, combining the actual outages (26,132 outages) with the actual daily crew data and the P75 

rate would have resulted in an estimated 10 day restoration (Figure 8). Using the customer-driven model as 

described Figure 10 and Section IVB, using the actual peak customers affected (831,000 customers) and 

P25 PCAO to derive the lower bound of predicted outages (17,312 outages) and using the fastest P75 rate, 

the projected ETR would have resulted in an estimated eight day restoration (Figure 10).  

 

Expedited restorations are desired, but utilities must be aware about how fast and efficaciously crews can 

repair outages when calculating ETR. The arrival of contractor and mutual aid crews from surrounding 

regions during severe weather can result logistical challenges to utilities that can prolong a restoration 

(Electric Edison Institute 2014). If the number of predicted outages and/or ordered crews are insufficient 

(e.g. underestimated) for an upcoming storm, the delayed crew arrival can contribute to prolonged ETRs. 

During major events like hurricanes it may take a crew one to five days to arrive at the service territory, 

which is a function of how far crews need to travel and when a contracting utility will release their crews 

for someone else to use. The use of both the outage-driven and customer-driven ETR models can help 

provide actionable information to Emergency Managers who must decide how many crews are needed, 

when they should arrive, and how quickly they can repair the grid. In the future, other technologies to 

monitor and assess power outages in near-real time such as remotely-sensed images of nighttime light 

measurements may also prove as useful inputs to future ETR models (Cao et. al 2014, Cole et. al 2017). 
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This research is complementary to previous models that investigate ETR at higher spatial and temporal 

resolution than our study (Liu et. al 2007, Nateghi et. al 2011, Nateghi et. al 2014b). Recent work by 

Nateghi et. al (2014a), which used weather-related variables to predict ETR for individual outage locations 

(not the entire service territory), found that areas with the most severe weather conditions had the longest 

outage durations. Although weather was not directly included in our study, weather data is a critical 

component of outage prediction models, which feed downstream ETR models. A limitation of Nateghi et. 

al (2014a) was that crews were not used as a predictive variable in the model, such that an influx or 

decrease in the number of crews would not affect the individual outage prediction during an active storm 

event. In comparison, in this paper we demonstrate how the number of crews along with the rates influence 

ETR.  As more granular crew data for storms becomes available, we envision that our ETR models can be 

built for geographic subunits of a service territory instead of the entire region.  

VI.  CONCLUSION 

We have presented methods for utilities to predict ETR during storms using a variety of data sources that 

utilities likely have on-hand, including crews, outages fixed and rates. We believe this is paper one of the 

first to use actual crew-related variables to predict ETR during recent storm events. Relationships between 

average daily crews and outage thresholds can provide early guidance to Emergency Managers who must 

decide whether or not enough crews have been ordered. Initial models inputted with outage predictions and 

a distribution of crew fix rates can be used to predict ETR, which can be later updated in an operational 

context as the peak number of customers become known. Utilities that want to be optimistic about ETR 

can use faster fix rates, while utilities who want to be more conservative can use the median or upper fix 

rate. Both approaches help utilities provide a reasonable, data-driven ETR without relying solely on 

qualitative past experiences or instinct. Although we have shown methods to predict a range of ETR, 

individual utilities need to decide how best to communicate uncertainty to the general public, government 
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officials and regulators. An ETR that is too early or too late will result in over or under-preparation, which 

both have their advantages and disadvantages. 

 

Finally, grid resilience improvements (e.g. structural and electric hardening) and vegetation management 

play a key role in the occurrence of outages and the time it takes to fix outages by changing the way the 

grid fails during storm events. Not all trees that are proximal to overhead lines are “risk trees”, but given 

that the majority of storm outages in Connecticut are tree-related (Connecticut Light & Power 2014), we 

expect there would be a decrease in tree-related outages if a utility could have less risk trees interacting 

with the overhead lines. If altering the tree conditions is not a viable option, some have suggested the way 

that outages occur could be altered such that repair times are decreased. The concept of “design for repair”, 

as described by (Reed 2008), suggests that if overhead lines were to snap rather than bring down a pole, 

crews would be able to fix outages faster, thereby decreasing ETR. These are interesting aspects that we 

hope to incorporate into future research works. 
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Figure 1: Eversource Energy Connecticut service territory (white); shaded areas are other service territories that were excluded from the 

analysis. The large, coastal area is part of United Illuminating, and the eastern Connecticut towns are served by a municipal utility. 
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Figure 2: (a) outages remaining to be fixed per day and (b) (a) crews working per day during Storm Irene, the October 2011 Nor’easter and 

Hurricane Sandy. 
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Figure 3: (a) crew fix rate per day of restoration during each storm; (b) kernel density plot showing the distributions of rates during each storm, 

dashed line represents the density of all three storms combined (n=30). 
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Figure 4: (a) scatter plot of peak customers affected during a storm vs. the total storm outages; (b) scatter plot of peak customers affected per 

outage (PCAO) vs. total storm outages; (c) kernel density plot of PCAO with plotted statistics for the 55 storms (2007-2013, including Irene, the 

Nor’easter and Sandy). 
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Figure 5: Changes in predicted ETR (y axis units are hours) as a function of average daily crews and outage thresholds using the (left) 25th 

percentile, (center) 50th percentile, and (right) 75th percentile of all daily fix rates (Figure 3). Dashed, horizontal black lines represent a seven 

day (168 hour) and 10 day (240 hour) restoration goal. Ordering and labeling of outage contours is consistent between all three panels. 
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Figure 6: Changes in predicted ETR (y axis units are hours) as a function of average daily crews for specific outage thresholds using P50 rate 

and the (left) P25, (center) P50, and (right) P75 PCAO values from the 55 storms (2007-2013, including Irene, the Nor’easter and Sandy). 

Dashed, horizontal black lines represent a seven day (168 hours) and 10 day (240 hours) restoration goal. Ordering and labeling of customer 

affected contours is consistent between all three panels. 
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Figure 7: In-sample restoration curve results using the P25, P50 and P75 rates from distribution of all rates and actual daily crews (i.e. Irene is 

predicted from the Irene, Nor’easter and Sandy fix rates with Irene’s daily actual crews.) 
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Figure 8: Out-of-sample restoration curve results using the P25, P50 and P75 rates from the two other storms to predict the validation storm 

(i.e. Irene is predicted from the Nor’easter and Sandy fix rates with Irene’s actual daily crews.) 
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Figure 9: In-sample restoration curve results using the P25, P50 and P75 of PCAO distribution from three major storms (i.e. Irene is predicted 

from the Irene, Nor’easter and Sandy distribution of PCAO.) P50 fix rate is assumed for each predicted outage. Actual crews for each storm are 

used. Last days of actual crews held constant when extrapolating beyond actual restoration day. 
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Figure 10: Out-of-sample restoration curve results using the P25, P50 and P75 of PCAO distribution from three major storms (i.e. Irene is 

predicted from the Nor’easter and Sandy distribution of PCAO.) The P75 fix rate is used with the P75 PCAO such that the lowest predicted 

outages have the smallest ETR, similarly, the P25 fix rate (slow) is used with the P25 PCAO such that the highest predicted outages has the 

largest ETR. Actual crews for each storm are used. Last days of actual crews held constant when extrapolating beyond actual restoration day. 

 

 

 


