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Abstract 

We have generated a light detection and ranging (LiDAR) data product that provides a 1-1 

meter resolution measurement of vegetation that is tall enough to strike overhead distribution 2 

powerlines, called “ProxPix”. These data, along with other vegetation management (e.g. tree 3 

trimming) and infrastructure data were evaluated for their improvement an outage prediction 4 

model over Eastern Connecticut during Hurricane Sandy. We found that models inputted with 5 

infrastructure, vegetation management, ProxPix, performed better than simpler models; and that 6 

the model forced with utility infrastructure and ProxPix had the best overall performance. The 7 

ProxPix data created for this study have application to other research topics such as prioritizing 8 

areas for vegetation management near utilities and providing data on potential tree threats to 9 

roads or railways. 10 

 11 

Keywords: Electric distribution network, severe weather, outage prediction model, vegetation 
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1. INTRODUCTION 12 

Connecticut has been subjected to prolonged power outages due to damage caused primarily 13 

by the interaction of trees and overhead power lines during extraordinary storms (i.e. Storm Irene 14 

and the October nor’easter in 2011, and Hurricane Sandy in 2012). Hurricane Sandy was 15 

especially impactful to Eversource Energy (formerly Connecticut Light & Power), with 16 

>500,000 customers without power and >15,000 outages (defined as individual locations 17 

requiring the manual intervention of a utility restoration crew for repair) caused mostly by 18 

branches or entire trees falling onto the overhead lines (1). Contributing to these high storm-19 

related outages, Connecticut has the highest wildland-urban interface in the United States (2) 20 

with a majority of residents living under a rural or urban tree canopy. 21 

Trees provide a host of benefits including: habitat for wildlife (3), shade that moderates 22 

temperatures (4), and aesthetic benefits (5). Electric utility companies are tasked (6) with 23 

managing these trees surrounding overhead lines to maintain acceptable reliability for customers 24 

(e.g. limiting the number of interruptions and duration of outages). The management of trees and 25 

other flora around overhead lines is known as vegetation management (VM); a multi-faceted 26 

program of managing trees by trimming above, below and on the side of overhead lines; and the 27 

management of vines and shrubs.  28 

Despite the influence of vegetation management on electric reliability during storms, 29 

there is limited information available on how VM affects distribution networks. Among these 30 

studies, (7) showed that increasing trimming on distribution circuits could lead to decreased 31 

outages on the Duke Power system in the Carolinas. Although multiple VM trimming strategies 32 

exist (e.g. trim overhead lines every 2 – 7 years), (8) showed that an optimized vegetation 33 
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management program as a function of utility cost and customer cost could yield an improvement 34 

in reliability (4 – 6%) and a reduction in total cost (9%). Other researchers (9) have investigated 35 

including VM data and other weather and geographic data into outage prediction models and 36 

found that the data could help the accuracy of these models. 37 

Utilities typically track where VM has occurred on the overhead lines in a geographic 38 

information system. Airborne Light Detection And Ranging (LiDAR) data complement VM data 39 

by making it possible to develop accurate models of tree heights and locations over large areas. 40 

Airborne LiDAR data have been used for more than a decade to model the heights of forest 41 

canopies (10). Canopy height models (CHM) estimate forest canopy height at any given location 42 

and make it possible to identify trees that are within striking distance of power lines. The 43 

identification of these risk trees provides a direct physical basis for outage prediction models to 44 

better incorporate the environmental conditions surrounding overhead power lines.  45 

The objective of this paper is to evaluate the available data on trees and infrastructure for 46 

their effect on improving hurricane outage model predictions. Specifically, we compare models 47 

incorporating these datasets to more traditional models that incorporate only limited 48 

environmental data. Given the temporal and spatial constraints of the data, we focus our paper 49 

exclusively on damages during Hurricane Sandy (2012) in eastern Connecticut. This paper is 50 

divided into six additional sections: Section 2 describes the study area; Section 3 describes the 51 

data used in more detail; Section 4 describes the methodology and error metrics; Section 5 52 

presents the results; Section 6 discusses the results; and Section 7 presents the conclusion and 53 

future areas of research. 54 
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2. STUDY AREA 55 

The study area is focused on eastern Connecticut (Figure 1) due to the availability of LiDAR 56 

data over the region. Eastern Connecticut has a diverse landscape with a lowland coastal 57 

southern region and a hilly northern region encompassing the Thames River valley. Population is 58 

most heavily concentrated along the shoreline and along the Thames River valley. Eversource 59 

Energy-Connecticut delivers power to nearly every town in eastern Connecticut except for three 60 

which are served by municipal utilities.  61 

3. DATA 62 

The data used in this study (described below) were aggregated using a grid with 0.5x0.5 km 63 

cell sizes; representing a total of 9,000 grid cells covering the study area. All datasets were 64 

averaged within each grid cell. Weather simulation data were processed at 2 km spatial 65 

resolution using the Weather Research and Forecasting (WRF) model (11), while all other 66 

explanatory data were processed at the 0.5 km grid resolution. For this study, we used the 67 

weather simulation and land cover data for Hurricane Sandy as described in (RW.ERROR - 68 

Unable to find reference:256) - see this article for a full description of the simulation 69 

methodology and validation of winds. Examples of variables from the weather simulation 70 

include the maximum gust and wind at 10 m, the total accumulated precipitation, and the 71 

duration of wind at 10 m above specific thresholds (i.e. 9, 13, and 18 m/s). To join the 2 km 72 

weather data to the 0.5 km aggregated data, the centroid of each 0.5 km grid cell was joined to 73 

the nearest 2 km centroid and assigned the corresponding data. See Table I for a description of 74 

all variables included in the model. 75 
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3.1 Utility Infrastructure 76 

We considered attributes of the conductors related to their circuit material (e.g. bare or 77 

covered) and designation (e.g. backbone or lateral) to make the model more physically-78 

meaningful. Conductor material was deemed important because the overhead lines suffer from 79 

different types of outages (i.e. incidental touching of trees for bare conductors, destruction of 80 

conductors for bare and covered conductors). Circuit designation was included because backbone 81 

circuits typically serve many more businesses and essential town functions (e.g. police, fire, 82 

ambulance) than lateral circuits, and are expected to be more resilient due to enhanced VM 83 

activities from 1994 - 2007 (Personal Communication, Sean Redding, Eversource Energy).    84 

3.2 Vegetation Management 85 

Using vegetation management annual planning data for years 2009 through 2012, we 86 

calculated the percentages of overhead lines that received SMT and ETT treatment as a function 87 

of conductor material and circuit designation for a given year in each 0.5 x 0.5 km grid cell. A 88 

linear decay function (Equation 1) was applied to the SMT to express the diminishing benefit of 89 

such treatment as time passes due to regrowth. A cumulative function (Equation 2) was applied 90 

to ETT because the benefit of such trimming activities are thought to be longer lasting and more 91 

effective than SMT (Personal Communication, Sean Redding, Eversource Energy).  92 

In summary, for each conductor material and circuit designation, we calculate the SMT or ETT 93 

value per grid cell as follows: 94 

 𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑙𝑙𝑢𝑢𝑢𝑢 =  ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 ⋅ 𝑟𝑟 ⋅ (2012 − 𝑗𝑗)2012
𝑗𝑗=2009   (1) 95 

𝐸𝐸𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑙𝑙𝑢𝑢𝑢𝑢 =  ∑ 𝐸𝐸𝑆𝑆𝑆𝑆𝑗𝑗2012
𝑗𝑗=2009   (2) 96 
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In the above two equations; SMT and ETT refer to the percentage of lines that were trimmed 97 

during the year, respectively; the year is j; the decay rate (25% per year) is r. Note that Sandy 98 

occurred in 2012 and the earliest date for which trim data were available is 2009. Figure 2 shows 99 

the distribution of trimming by type (ETT vs. SMT) across the entire study area from 2009 - 100 

2012. Refer to Table I for a summary of the different variables related to vegetation 101 

management.  102 

Note that the Enhanced Tree Trimming (ETT) specification during 2009 – 2012 along the 103 

roadside differed for backbone and lateral circuits. Regarding ETT roadside clearance for lateral 104 

circuits, the clearance zone from the conductor was 8 feet to the side, 20 feet overhead and cut 105 

brush flat to the ground; for backbone circuits, the clearance zone from the conductor was clear 106 

overhead, 8 feet to the side, and brush was cut to the ground. Exceptions to these specifications 107 

could be granted in some cases at the request of a tree owner or town (Personal Communication, 108 

Sean Redding, Eversource Energy). Comparatively, the Standard Maintenance Trimming (SMT) 109 

specification during 2009 -2012 was less intensive. The roadside SMT clearance for lateral 110 

circuits was a minimum of 8 feet to the side, 15 feet overhead, 10 feet below clearance within 111 

reach of a 55 foot lift unit; for backbone circuits, trimming must re-clear to previous overhead 112 

clearances within reach of a 70 foot lift unit. 113 

 3.3 LiDAR-Derived Tree Height Information 114 

Airborne LiDAR data were acquired for nearly 4600 km2 in eastern Connecticut from 115 

November 3 – December 11, 2010 (12) (Figure 1). The data were collected with a Leica ALS60 116 

Airborne Laser Scanner at an altitude of approximately 2,000 meters above ground level. At this 117 

altitude, the ALS60’s beam divergence of 0.22 millirads creates a footprint of roughly 44 cm on 118 
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the ground. The scanner’s pulse rate was 117.9 kHz and the pulse wavelength was 1064 nm. The 119 

flight line overlap was 50% and the data provider eliminated data between the geometrically 120 

usable portions of the swaths. The maximum scan angle of the sensor was 16.5⁰ from nadir and it 121 

recorded up to 4 returns per laser pulse. The dataset has an overall density of 1.56 returns / m2 122 

with a maximum point spacing of 0.7 meters, excluding water bodies. The horizontal accuracy of 123 

the dataset is equal to or better than 1 meter RMSE. The project’s principle contractor processed 124 

the LiDAR data to create a bare-earth digital elevation model (DEM), at a 1-meter resolution, 125 

with building features removed. Dewberry (12) evaluated the accuracy of the DEM using 62 126 

surveyed ground control points distributed through non-vegetated, grass, and forested terrains. 127 

The vertical RMSE for the DEM, based on ground control points, was estimated at 5 cm in non-128 

vegetated terrain, 17 cm for grassy terrain, and 21 cm in forest terrain.  The primary purpose of 129 

the LiDAR dataset was to develop the bare-earth DEM for use in conservation planning, 130 

floodplain mapping, dam safety assessments, and hydrological modeling (12).  131 

3.3.1 Canopy Height Model 132 

A canopy height model, based on airborne LiDAR, was created following the methods 133 

described in (13). The CHM was created by subtracting the bare-earth DEM, created by 134 

Dewberry (12), from a digital surface model (DSM) that we created from the LiDAR data. The 135 

DSM corresponded to the maximum elevations in the tree canopy and was aligned to the DEM 136 

grid and had the same 1-meter resolution. The cell values for the DSM were determined by 137 

taking the maximum of all non-ground first-return points within a given cell. Because the overall 138 

density of the LiDAR dataset was 1.56 returns / m2, the majority of non-water pixels in the DSM 139 

grid contained at least one first-return point. The first-returns were filtered to remove points that 140 

obviously did not correspond to features on the earth’s surface (e.g. large birds in flight). These 141 
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anomalous points were identified by comparing each first-return to all points within a 2.5 meter 142 

radius. Points were discarded if they were more than 30 meters taller than any other points within 143 

the neighborhood. We selected the 30-meter threshold because it approximates the upper limit of 144 

canopy heights in northeastern forests and thus it represented a reasonable maximum elevation 145 

difference for points along forest gaps and edges. Considering the point spacing of our airborne 146 

LiDAR data, we assumed that continuous data gaps larger than 3 meters in radius were likely to 147 

correspond to water, which tends to absorb LiDAR energy (14). The bare-earth DEM values 148 

were assigned to the cells in these larger data gaps that were presumed to correspond to water 149 

bodies. A test of 52 1x1 km sample areas showed that only 12.9%, on average (std. dev. = 3.4), 150 

of the areas consisted of data gaps for which there was no first-return data. More than 91% of 151 

these gaps were less than 1 meter in radius; approximately 7% of the gaps were 1-2 meters in 152 

radius; and approximately 1% of the gaps were 2-3 meters in radius. Thus, we interpolated the 153 

values for cells in the DSM data gaps, smaller than 3 meters in radius, by taking the median of 154 

the known values in the cells’ eight nearest neighbors. Cells with fewer than three known nearest 155 

neighbors were filled using a 2nd or 3rd interpolation pass. 156 

3.3.2 Proximal Tree Pixels 157 

Previous studies have suggested that mapping of individual tree crowns requires LiDAR data 158 

with a spatial resolution of at least 4-8 pts / m2 (15, 16). Because the resolution of our data (<2 159 

pts/m2) was insufficient for mapping crowns, we used “proximity tree pixels” as a surrogate for 160 

risk trees. We define proximity tree pixels (ProxPix) as 1 m pixels in a canopy height model 161 

(CHM) that are tall enough and close enough to contact a power line in the event of a whole or 162 

partial tree failure. Multiple ProxPix can correspond to a single tree; however, intuitively, we 163 

expected a high correlation between the number of ProxPix and number of trees corresponding to 164 
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those ProxPix. ProxPix were identified from the canopy height model as pixels with a height 165 

larger than the distance from the pixel at ground-level to a point 10 m above ground at the 166 

location of the nearest power line (Figure 3). The ground-level for a pixel was determined from 167 

the bare-earth DEM; 10 meters was assumed to be the height of the primary lines above ground 168 

level.  169 

The power line dataset had a median horizontal position error of 11.8 meters (std. dev. = 170 

9.9m). Therefore, we created a 15 m buffer around the reported power line locations and mapped 171 

ProxPix treating the buffer zone as the power line. ProxPix were extracted throughout the study 172 

area (Figure 1) and aggregated into counts for the 0.5 km grid. The counts were then normalized 173 

by total overhead line length (resulting in ProxPix/km) for use in the models.  174 

4 METHODOLOGY 175 

4.1 Model Forcing Complexities 176 

To ensure that predictors were not contributing unnecessary complexity in the model 177 

structure, five model forcing complexities (Table I) were evaluated to investigate the added value 178 

to the outage prediction model of incorporating: (a) vegetation management, (b) the LiDAR-179 

derived proximal tree pixel dataset and (c) detailed infrastructure. The baseline model (Model 1) 180 

was used for comparison to the more complex models and consisted of a full set of weather 181 

variables, land cover, and the count of isolating devices per grid cell to represent the overhead 182 

infrastructure. This model is most similar to those in (RW.ERROR - Unable to find 183 

reference:256) and (17). Model 2 builds upon the baseline model with the addition of the circuit 184 

material and designation data, as well as land cover data. Model 3 builds upon Model 2 with the 185 

addition of vegetation management data. Model 4 also builds upon Model 2 with the addition of 186 
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ProxPix data. Model 5 is the most comprehensive, including detailed infrastructure, vegetation 187 

management, and ProxPix data. To compare the benefit of ProxPix and land cover, Models 1 – 3 188 

used land cover data to represent the local tree conditions while Models 4 and 5 used ProxPix as 189 

an alternative to land cover. 190 

4.2 Description of Random Forest Algorithm 191 

The statistical software program R (18) was used to complete all modeling and analyses. The 192 

R package “randomForest” (19) was used to predict the binary response variable. We selected 193 

the random forest model due to its efficiency and satisfactory performance in previous literature 194 

that predicted hurricane damages (RW.ERROR - Unable to find reference:256) and outages (9). 195 

Random forest (20) is an extension of the classification and regression tree (“decision tree”) 196 

model (21); whereas a decision tree makes a series of logical “if-then” statements from a single 197 

pass through the training partition, the random forest uses a random subset of the training data 198 

and a random subset of explanatory variables to fit multiple decision trees (20). The predictions 199 

from all of the decision trees are referred to as the “forest” – the average of the forest predictions 200 

are used as the final prediction. 201 

4.3 Binary Response Variable and Model Evaluation 202 

Outages are defined as locations that require a restoration crew to manually intervene to 203 

restore power. Of the 9,000 grid cell in the 0.5 km spatial domain, 1,320 had one outage, 440 had 204 

more than 1 outage, and no grid cell had more than eight outages. Because of this distribution, 205 

we used binary response models with a balanced sampling approach to investigate the accuracy 206 

of outage predictions. An indicator of “1” was assigned if an outage occurred in the grid cell, 207 

otherwise a “0” was assigned. Grid cells without an outage (n=7,240) are referred to as the 208 

majority class, grid cells with an outage (n=1,760) are referred to as the minority class. The 209 
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balanced random forest (BRF) algorithm proposed by (22) consists of down-sampling the 210 

majority class to learn from imbalanced by fitting a single model. In order to maximize the 211 

information of the majority class, we repeated the BRF algorithm 10,000 times and compared the 212 

error metrics for each iteration. This approach resulted in a distribution of the error metrics for 213 

each of the five model complexities we investigated. For each of the 10,000 iterations, the model 214 

complexity with the most improved error metrics was selected as the “winner”. The frequency of 215 

how many times each model was selected the “winner”, based on the error metrics, is 216 

summarized in Table II.  217 

4.4 Error Metrics 218 

The R package “SDMTools” (23) was used to calculate various contingency table metrics to 219 

describe the model performance more completely. Specifically, we used the following metrics 220 

for model comparison: area under the curve (AUC), false omission rate (FOR), true positive rate 221 

(TPR), true negative rate (TNR), proportion correct (PC), and Cohen’s kappa (K). For the 222 

following equations (Eq. 4 through 7); TP (true positive) refers to the counts of true positives; 223 

TN (true negative) refers to the counts of true negatives; FP (false positives) refers to the counts 224 

of false positives; and FN (false negatives) refers to the counts of false negatives.  225 

𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹

  (4) 226 

𝑆𝑆𝑇𝑇𝐹𝐹 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (5) 227 

𝑆𝑆𝑇𝑇𝐹𝐹 =  𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

  (6) 228 
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𝑇𝑇𝑃𝑃 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

  (7) 229 

K = 2�(𝑇𝑇𝑇𝑇∗𝑇𝑇𝐹𝐹)−(𝐹𝐹𝑇𝑇∗𝐹𝐹𝐹𝐹)�
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹)+(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹)  (8) 230 

Each of the metrics we evaluated has desirable properties that describe the model 231 

performance. The area under the Receiver Operating Characteristic curve (AUC) is an accuracy 232 

metric that shows the model discrimination (the ability to correctly identify true negatives 233 

positives); an AUC of 1 represents a perfect prediction whereas an AUC of 0.5 or less represents 234 

a test that is no better than chance. The false omission rate (Equation 4) is the proportion of false 235 

negatives given the test outcome was negative; a FOR of 1 indicates that all predictions for 236 

negatives were false whereas a FOR of 0 indicates that there were no false negative. The true 237 

positive rate (TPR), also known as sensitivity, is how many times TP was correctly predicted 238 

given a positive reading; a TPR of 1 indicates a model is perfect at predicting true positives, a 239 

TPR of 0 indicates a model that is incapable of predicting true positives. The true negative rate 240 

(TNR), also known as specificity, is a measure of how many times true negatives are actually 241 

predicted; a TNR of 1 indicates a model is perfect at predicting where damage will not occur, a 242 

TNR of 0 indicates a model that fails to predict where outages will not occur. The proportion 243 

correct (PC) is a measure of how many observations are correctly identified; a PC of 1 indicates 244 

a perfect predictor, a PC of 0 indicates a predictor that fails to predict where actual outages 245 

occur. Cohen’s kappa statistic (K), also known as Heidke Skill Score, is a measure of agreement 246 

between categorical variables based on the proportion correct. A K of 1 indicates a perfect 247 

prediction, and zero or negative values can happen when forecasts are equal to or worse than the 248 

reference.  249 
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5 RESULTS 250 

The error metrics of Model 1 were used as baseline to compare subsequent models with 251 

increasingly complex model forcings (Models 2 through 5). As previously mentioned, the 252 

validation strategy used repeated balanced sampling (RBS) with 10,000 iterations to select which 253 

model performed the best for each of the five models . The frequency of how many times each 254 

model was selected the “winner”, based on the error metrics, is summarized in Table II.  Models 255 

2 – 5 were selected more frequently for most error metrics than the baseline model (Model 1). 256 

Model 4 was the most frequently selected for AUC, TNR, PC, and K error metrics, while Model 257 

5 was the most frequently selected for TPR and FOR. Although Model 5 was selected most 258 

frequently for these two metrics, Model 4 was the second most selected model.  Under the 259 

validation strategy we used to compare the five model forcing complexities, Model 4 proved to 260 

be the best model for the following error metrics: AUC, TNR, PC and K (Tables 2 and 3). 261 

Although Model 4 was “better” (more frequently selected) than Model 1 for TNR, it was only 262 

marginally better, which may indicate that a simpler model forcing complexity may yield better 263 

predictions of the true negatives. The next best model was Model 5, the most complex model, 264 

and was most frequently selected for two error metrics (FOR and TPR). To compare model 265 

performance, each model was ranked (1 – 5) across all error metrics based on frequency (where 266 

1 is considered the most frequent and 5 is least frequent). The average of these individual error 267 

metric rankings was computed to select the best overall model. Overall, Model 4 was the best 268 

model followed by Models 5, 3 and 2 (Table 4). From a physical perspective, the superiority of 269 

Model 4 is attributed to the model forcing complexity that included ProxPix, which in turn gave 270 

the best representation of local tree risk and more accurate outage predictions (this will be 271 

discussed further in Section 7).  272 
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The kernel density plots in Figure 5 show the improved performance of Model 4 compared to 273 

the Model 1 (baseline model) for all error metrics.  The value of AUC, TPR, TNR and PC ranged 274 

between 0.58 - 0.72; while K values varied between 0.19 – 0.43. The maximum improvement for 275 

each metric between Models 1 and 4 was 6% for AUC, 5% for FOR, 9% for TPR, 7% for TNR, 276 

6% for PC, and 13% for K. However, the average improvement of Model 4 compared to Model 1 277 

was 1% for AUC, 2% for FOR, 2% for TPR, 1% for PC, 2% for K and no improvement on 278 

average for TNR. Figure 5 shows a clear separation between the kernel density plots for each 279 

category except for TNR where the distribution of values nearly overlapped.  280 

We now focus on the results of Model 5, as it includes the interaction of all variables of 281 

interest related to weather, infrastructure and tree conditions. The variable importance plot in 282 

Figure 6 details the degree to which a specific covariate contributed to Model 5 as measured by 283 

the mean decrease in the Gini coefficient. The three most important variables were the total 284 

length of overhead lines, the sum of the assets, and the ProxPix normalized by overhead line 285 

length. Also among the top ten most important variables were the storm accumulated 286 

precipitation, the mean and maximum gust, and the precipitation rate. Figure 7 shows partial 287 

dependence plots, which details the dependence between the response variable and a specific 288 

covariate, marginalizing over the values of all other variables. The covariate of interest is plotted 289 

on the x axis, while the y axis provides the response variable (in this case, it is the logit of the 290 

predicted outages). Variables that had a contribution to decreased predicted outages included the 291 

total overhead length and sum of assets. In contrast, increased mean gust and wind at 10 m 292 

contributed to increased predicted outages. On backbone lines, ETT and SMT on backbone bare 293 

and covered lines showed a decrease in predicted outages, while lateral lines have a mixed 294 

response depending on conductor material and circuit type. 295 
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6 DISCUSSION 296 

We have evaluated the error metrics of five model forcing complexities related to 297 

infrastructure and local tree conditions, and investigated the improvement of each complexity in 298 

an outage prediction model with a binary target variable. The inclusion of additional variables 299 

related to the distribution network infrastructure and local tree risk data (ProxPix) resulted in 300 

improved error metrics and model performance. A comparison of Model 1 and Model 2 shows 301 

that the model with additional infrastructure data on circuit material and designation performed 302 

better than the reduced infrastructure model. A comparison of Model 2 and Model 3 suggests 303 

that VM data and infrastructure data can be a decent substitute for tree canopy height data. 304 

Models that combine tree height and detailed infrastructure data would yield the best 305 

performance.  306 

Our results are consistent with other papers in the literature that show that incorporating 307 

additional data on infrastructure and environmental conditions can yield at improved outage 308 

predictions (read below for further explanation). In particular, this current study supports our 309 

previous study (RW.ERROR - Unable to find reference:256), which showed that including 310 

additional information on land cover and infrastructure can be used to improve the spatial 311 

accuracy of outage predictions during hurricanes.  312 

Many recent outage modeling papers that use a grid-averaged approach predict the count of 313 

outages per grid cell rather than modeling the probability of an outage occurring (9, 24-26). 314 

Despite difference in response variable type, grid cell resolution, geographic region, storms and 315 

model forcing, we can still draw comparisons to other papers on the influence of certain 316 

variables contributing to the predicted outages. Nateghi et al. (9) presented partial dependence 317 

plots that demonstrate how VM contributed to increased predicted hurricane outages in two Gulf 318 
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region states, and also showed that the mean absolute error per grid cell increased 43 – 53% 319 

when outage models were fit without VM data. We build on these results and show that VM can 320 

contribute to either an increase or decrease in predicted outages depending on the infrastructure 321 

attributes. Specifically, the increase of ETT and SMT on backbone lines contributes to lower 322 

predicted outages regardless of conductor material; while the pattern varied by treatment, 323 

conductor material and circuit designation for lateral lines (Figure 7).  324 

The benefits of VM during non-storm conditions in the Duke Power System (Carolinas) was 325 

previously modeled by (7), who showed that going from a four year to a three year trimming 326 

cycle would eliminate 0.9 outages per circuit over a 43 month period. We are unable to make the 327 

conclusion that VM reduces hurricane outages because our paper is limited by a single region 328 

and storm. However, seeing change in predicted outages as a function of conductor material and 329 

circuit type is promising (Figure 7), and provides motivation to incorporate additional data on the 330 

overhead infrastructure and local tree conditions in future studies. In addition, building on the 331 

previous work by (27) who showed how storm attributes would contribute to longer restoration 332 

times, we believe ProxPix may be able to enhance outage duration predictions by providing 333 

information on local tree conditions which may be correlated with damage severity (i.e. broken 334 

wire vs. broken pole). As time progresses, we hope to extend our methodology to analyze how 335 

VM, ProxPix and infrastructure contribute to outage predictions from more frequently occurring 336 

storms (e.g. thunderstorms and nor’easters) 337 

CONCLUSION 338 

We have presented a study that shows that the inclusion of data related to localized tree 339 

conditions (ProxPix and vegetation management) and utility infrastructure can improve outage 340 
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prediction models with a binary response variable. We found that more complex models with 341 

vegetation management, ProxPix, and infrastructure performed better than the simple baseline 342 

model; and that the model forced with utility infrastructure and ProxPix had the best overall 343 

performance. The ProxPix data created for this study have application to other research topics 344 

such as prioritizing areas for vegetation management near utilities and providing data on 345 

potential tree threats to roads or railways. Guikema et al. (28) previously showed how an outage 346 

model calibrated with publicly available data in the Gulf region could be applied to show the 347 

impact of historic storms in different geographic regions. This approach could over- or 348 

underestimate outages as each electric utility has different utility infrastructure and vegetation 349 

conditions, which are not well represented by land cover data alone. With the use of LiDAR, the 350 

methodology in (28) could potentially benefit from the quantitative measurement of tree 351 

conditions along roadsides across all utilities and be used to enhance these models. In addition, 352 

given that the majority of overhead lines follow roadways, LiDAR-derived tree height data near 353 

utility lines could also be used for determining which roads might be most vulnerable to downed 354 

trees.  355 
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Figure 1: Distribution of the 4600 km2 LiDAR data in eastern CT over the study area. 478 
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 484 

Figure 2: Comparison of grid cells across Eversource CT service territory. Grid cells with color 485 

represent that trimming occurred (does not reflect how intense the trimming was).  486 
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 499 

Figure 3: Identifying proximity pixels in the canopy height model based on pixel height and 500 

distance to power lines. 501 
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 507 

Figure 4: (a) Canopy height model with 1 m spatial resolution based on LiDAR data, lighter 508 

colors indicate taller features; (b) model of ProxPix (red) near power lines. 509 
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 511 

Figure 5: Panel plot of all contingency metrics evaluated (dark gray = Model 1, white = Model 512 

4, light gray = overlap of Model 1 and Model 4). 513 
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 515 

Figure 6: Variable importance plot from Model 5. 516 
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 520 

Figure 7: Partial dependence plots from Model 5 for select covariates. See Table I for a list of abbreviations. 521 
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Table I: List of variables included in models. Asterisk (*) denotes maximum and mean variables calculated. 522 

Variable  Abbreviation Description Type Units Model 1 Model 2 Model 3 Model 4 Model 5 

Duration of wind at 10 meters above 9 m/s wgt9 Weather Continuous hr X X X X X 

Duration of wind at 10 meters above 13 m/s wgt13 Weather Continuous hr X X X X X 

Duration of wind at 10 meters above 18 m/s wgt18 Weather Continuous hr X X X X X 

Continuous duration of wind at 10 meters above 9 
m/s 

cowgt9 Weather Continuous hr X X X X X 

Continuous duration of wind at 10 meters above 13 
m/s 

cowgt13 Weather Continuous hr X X X X X 

Continuous duration of wind at 10 meters above 18 
m/s 

cowgt18 Weather Continuous hr X X X X X 

Duration of wind gusts above 18 m/s ggt18 Weather Continuous hr X X X X X 

Duration of wind gusts above 27 m/s ggt27 Weather Continuous hr X X X X X 

Duration of wind gusts above 36 m/s ggt36 Weather Continuous hr X X X X X 

Duration of wind gusts above 45 m/s  ggt45 Weather Continuous hr X X X X X 

Total accumulated precipitation TotPrec Weather Continuous mm X X X X X 

Wind stress* WStress Weather Continuous unitless X X X X X 

Wind gust* Gust Weather Continuous m/s X X X X X 

Wind at 10 m height* Wind10m Weather Continuous m/s X X X X X 

Precipitation Rate* PreRate Weather Continuous mm/hr X X X X X 

Sum of Assets SumAsset Infrastructure Continuous count X X X X X 

Total Length of Overhead Lines TotOHLength Infrastructure Continuous m X X X X X 

Percentage Backbone Bare Lines PercBBBare Infrastructure Continuous m   X X X X 

Percentage Backbone Covered Lines PercBBCov Infrastructure Continuous m   X X X X 

Percentage of Lateral Bare Lines PercLATBare Infrastructure Continuous m   X X X X 

Percentage of Lateral Covered Lines PercLATCov Infrastructure Continuous m   X X X X 

Percent Forested PERCForest Land Cover Continuous % X X X     

Percentage of Backbone Bare - ETT ETTValBBBare Vegetation Management Continuous %     X   X 
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Percentage of Lateral Bare – ETT ETTValLatBare Vegetation Management Continuous %     X   X 

Percentage of Lateral Covered - ETT ETTValBBCov Vegetation Management Continuous %     X   X 

Percentage of Lateral Covered - ETT ETTValLatCov Vegetation Management Continuous %     X   X 

Percentage of Backbone Bare - SMT SMTValBBBare Vegetation Management Continuous %     X   X 

Percentage of Lateral Bare – SMT SMTValLatBare Vegetation Management Continuous %     X   X 

Percentage of Lateral Covered - SMT SMTValBBCov Vegetation Management Continuous %     X   X 

Percentage of Lateral Covered - SMT SMTValLatCov Vegetation Management Continuous %     X   X 

ProxPix per kilometer ProxPix_km Hazardous Tree Pixels Continuous ProxPix/km       X X 

 523 
 524 

 525 

Table II: Counts of which model was the winner using repeated balanced sampling. 526 

 Model AUC FOR TPR TNR PC K 
Model 1 658 477 477 2475 658 658 
Model 2 1530 1486 1486 1833 1530 1530 
Model 3 1646 1754 1754 1700 1646 1646 
Model 4 3706 3118 3118 2486 3706 3706 
Model 5 2460 3165 3165 1506 2460 2460 

 527 

 528 

 529 
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Table III: Relative improvement in the error metrics compared to baseline model (Model 1) 530 

 Model AUC FOR TPR TNR PC K 
Model 1 - - - - - - 
Model 2 132.5% 211.5% 211.5% -25.9% 132.5% 132.5% 
Model 3 150.2% 267.7% 267.7% -31.3% 150.2% 150.2% 
Model 4 463.2% 553.7% 553.7% 0.4% 463.2% 463.2% 
Model 5 273.9% 563.5% 563.5% -39.2% 273.9% 273.9% 

 531 

 532 

Table IV: Selecting the best model overall using the ranking scheme 533 

Model  Rank(AUC) Rank(FOR) Rank(TPR) Rank(TNR) Rank(PC) Rank(K) Average Rank Final Rank 
Model 1 5 5 5 2 5 5 4.5 5 
Model 2 4 4 4 3 4 4 3.8 4 
Model 3 3 3 3 4 3 3 3.2 3 
Model 4 1 2 2 1 1 1 1.3 1 
Model 5 2 1 1 5 2 2 2.2 2 
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