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Abstract 19 

Weather prediction accuracy is very important given the devastating effects of extreme 20 

weather events in recent years. Numerical weather prediction (NWP) systems are used to build 21 

strategies to prevent catastrophic losses of human lives and the environment and have evolved 22 

with the use of multi-model or single-model ensembles and data assimilation techniques in an 23 

attempt to improve the forecast skill. However, these techniques require increased 24 

computational power (thousands of CPUs) due to the number of model simulations and 25 

ingestion of observational data from a wide variety of sources.  26 

In this study, the combination of predictions from two state-of-the-science atmospheric 27 

models (WRF and RAMS/ICLAMS) using Bayesian and simple linear regression techniques is 28 

examined, and the improvement in wind speed prediction for the Northeast United States (NE 29 

U.S.) using regression techniques is demonstrated. Retrospective simulations of seventeen 30 

storms that affected NE U.S. during the period 2004-2013 are performed and utilized. Optimal 31 

variances are estimated for the thirteen training storms by minimizing the root mean square 32 

error and are applied to four out-of-sample storms (Hurricane Irene (2011), Hurricane Sandy 33 

(2012), November 2012 winter storm and February 2013 blizzard). The results show a 20-30% 34 

improvement in the systematic and random error of 10-m wind speed over all stations and 35 

storms, using various storm combinations for the training dataset. This study indicates that 10 36 

to 13 storms in the training dataset are sufficient to reduce the errors in the prediction and a 37 

selection based on occurrence (chronological sequence) is also considered efficient.  38 
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1. Introduction 39 

Weather forecasting, applied to global and regional scales, has evolved with the use of 40 

multi-model or single-model ensembles (Doblas-Reyes et al. 2005; Palmer et al. 2008; Weigel 41 

et al. 2009; Kirtman et al. 2014), data assimilation techniques (Barker et al. 2012; Wang et al. 42 

2013; Ancell et al. 2015) and high-resolution grid spacing (Roberts 2003; Speer et al. 2003; 43 

Steppeler et al. 2003; Gego et al. 2005; Schwartz et al. 2009) in an attempt to improve the 44 

forecast skill. Despite the noted improvements, inaccuracies caused by random and systematic 45 

errors are a continuous topic for research (Krishnamurti et al. 2004; Mass et al. 2008; Ancell et 46 

al. 2011; 2012; Delle Monache et al. 2011). The ability of numerical weather prediction (NWP) 47 

models to accurately describe atmospheric conditions under various dynamic states is 48 

influenced by errors caused from the implemented physical parameterizations, initial state, 49 

boundary conditions and data availability. Atmospheric complexity and inability to handle sub-50 

grid scale phenomena also cause errors in the predicted meteorological variables (Libonati et al. 51 

2008; Louka et al. 2008; Idowu and deW Rautenbach 2009). Restrictions in the resolution 52 

cause the imperfect representation of the actual surface properties (e.g., topography, vegetation, 53 

soil types and moisture, and sea surface temperature) which can result in significant model 54 

error along the sharp gradients. In addition, inaccurate prediction of land surface interactions 55 

can be disadvantageous to the NWP (Koster and Suarez 2001; Drusch and Viterbo 2007; 56 

Papadopoulos et al. 2008; Serpetzoglou et al. 2010), and approximation of the planetary 57 

boundary layer representation can be an error source for the prediction of surface variables 58 

(Arakawa 2004; Pleim 2007; Hu et al. 2010; Nielsen-Gammon et al. 2010; Frediani et al. 2016). 59 

Using high spatial resolution and/or data assimilation does not always assure high 60 

forecast accuracy, because of the important role of the input fields, initial conditions and 61 
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inherent model uncertainties that influence the prediction. Statistical post-processing 62 

approaches play a useful role to address this issue and contribute to the reduction of prediction 63 

errors. Various techniques on statistical post-processing for error/bias correction have been 64 

suggested in the literature. These techniques are based on: (1) running mean bias removal 65 

(Stensrud and Yussouf 2003; 2005; Eckel and Mass 2005; Hacker and Rife 2007; Wilczak et al. 66 

2006) (2) Kalman filter (KF) post-processing (Libonati et al. 2008; Müller 2011; Homleid 1995; 67 

Roeger et al. 2003; McCollor and Stull 2008; Rincon et al. 2010; Delle Monache et al. 2006; 68 

2008; 2011; Djalaova et al. 2010; Kang et al. 2010) (3) Model Output Statistics (MOS) (Glahn 69 

and Lowry 1972; Carter et al. 1989; Jacks et al. 1990; Mao et al. 1999; Wilson and Vallée 2002; 70 

2003; Hart et al. 2004; Wilks and Hamill 2007; Glahn et al. 2009). 71 

Combining statistical post processing techniques with NWP ensemble simulations is of 72 

particular interest due to the ability to characterize model uncertainty and improve the predicted 73 

variables (e.g., wind speed, temperature, humidity, etc.). Even though there is no consensus on 74 

the adequate amount of ensemble members as well as the best way to combine them (Weigel et 75 

al. 2010), computational cost of ensemble simulations can be a deterrent factor. The motivation 76 

for this work has its basis on the use of a computationally efficient scheme that uses only two 77 

NWP models and statistical post-processing techniques over a set of meteorological storms that 78 

have common characteristics. One typical method for optimum weighting of the ensemble 79 

members is Bayesian model averaging (BMA) that estimates each member’s contributing 80 

weight (Raftery et al. 2005; Wilson et al. 2007; Fraley et al. 2010; Erickson et al. 2012; 81 

Sloughter et al. 2007; 2010). In the BMA approach, the calibrated weights reflect the forecast 82 

skill of each ensemble member over a training period (Fraley et al. 2010). Fraley et al. (2010) 83 

implemented BMA with 86 members, which represent a relatively large number of ensemble 84 
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members, to show how the BMA can be adapted to handle exchangeable ensemble members. 85 

Erickson et al. (2012) ran BMA for specific weather storms including fire weather that caused 86 

poor air quality. This test was conducted using sequential (the most recent days) and 87 

conditional training periods (the most recent similar days), and showed that the correction of 88 

conditional training period was better than the sequential training. 89 

The similarity or difference between training and out-of-sample conditions can affect 90 

the results of statistical post-processing methods that accompany training algorithms. Although 91 

statistical post-processing methods correct the errors over general cases, specific storms may 92 

not be improved when the training period does not consider similar patterns with the target 93 

storms. In other words, if the training dataset reflects the characteristics of the target storm, the 94 

modeled field may be improved more efficiently. Especially for high wind speed weather 95 

storms, distinguishing the mean atmospheric conditions and using a training scheme with a 96 

dataset fitted to similar weather conditions can be a critical factor for the success of the error 97 

correction. Our reference to extreme storms includes tropical storms, heavy precipitation 98 

associated with floods, blizzards with strong sustained winds, and seasonal thunderstorms. 99 

The main objective of this study is to improve surface wind speed prediction under 100 

extreme weather conditions, as it is strongly correlated with negative effects in civil 101 

infrastructure, power grid and the environment. To this end, the combination of wind speed 102 

predictions from two atmospheric models using a Bayesian Linear Regression (BLR) approach 103 

is explored, and the potential to improve wind speed prediction against single model 104 

simulations and Simple Linear Regression (SLR) techniques is demonstrated. The combination 105 

of two atmospheric modeling systems with simple bias correction techniques serves two 106 

purposes: minimizes computational cost since only two model members are being employed 107 
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and determines the value added by Bayesian regression in a deterministic framework. An 108 

additional goal of this work is to assess the efficient length for the training period in 109 

chronological and non-chronological sequences, which will be important in the operational 110 

application of the described methodology. The work presented here will support the operational 111 

prediction of power outages in NE U.S. that are strongly influenced by wind severity (Wanik et 112 

al. 2015; He et al. 2016). Currently, the power outage modeling system is operating with 113 

meteorological inputs from the WRF model (Wanik et al. 2015). Section 2 describes the model 114 

configuration and data used, section 3 presents the methodology for SLR and BLR and section 115 

4 includes discussion of the results. Conclusions and future work are summarized in section 5. 116 

 117 

2. Models and data 118 

a. Atmospheric modeling systems 119 

Two mesoscale meteorological modeling systems are implemented to simulate the 120 

selected storms. The Weather Research and Forecasting model (WRF-ARW version 3.4.1; 121 

referred to as WRF) (Skamarock et al. 2008) and the Regional Atmospheric Modeling 122 

System/Integrated Community Limited Area Modeling System (RAMS/ICLAMS; referred to 123 

as ICLAMS) (Cotton et al. 2003; Solomos et al. 2011; Kushta et al. 2014). ICLAMS is an 124 

integrated air quality and chemical weather modeling system based on RAMSv6 (Pielke et al. 125 

1992; Cotton et al. 2003) that directly couples meteorological fields with air quality 126 

components, and includes gaseous, aqueous, aerosol phase chemistry and partitioning of cloud 127 

condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN) as 128 

predictive quantities (atmospheric chemistry and feedback processes are not included in the 129 

ICLAMS simulations for this work). 130 
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Both models have three nested domains covering the Northeast U.S. with horizontal 131 

grid spacing of 18 km (outer domain), 6 km (inner-intermediate domain) and 2 km. The third 132 

gridded domain is the focus area in this work (Fig. 1a, b). To initialize the two models, the 133 

National Centers for Environmental Prediction (NCEP) Global Forecast System (1° × 1°, 6-134 

hourly intervals) analyses (NCEP/NOAA, 2007) and the Final Analysis (1° × 1°, 6-hourly 135 

intervals) data (NCEP/NOAA, 2000) are used for WRF and ICLAMS respectively. 136 

Configuration details for both WRF and ICLAMS are summarized in Table 1. 137 

The storms that comprise the training and validation datasets are selected after a k-138 

mean clustering analysis of sea level pressure, 2-m temperature and 10-m wind speed from the 139 

European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-140 

Interim: Simmons et al. 2007) for 80 storms that affected the power network in NE U.S. (from 141 

20 outages to > 15,000 outages) and span the period 2004-2013 (Maria Frediani, personal 142 

communication, 2015). A subset of seventeen storms is selected, which belong to two clusters 143 

representing winter and late summer/fall season storms with strong winds and intense pressure 144 

gradients. The selected storms include three major storms for NE U.S.: Hurricane Irene (2011), 145 

Hurricane Sandy (2012) and the 8-9 February (2013) blizzard. General information about the 146 

storms is included in Table 2. 147 

b. Observations 148 

The Automated Surface Observing System (ASOS) observation datasets at the 149 

National Centers for Environmental Prediction (NCEP) are used for model evaluation and also 150 

for the implementation of error optimization (SLR and BLR). The ASOS generally provides 151 

minute-by-minute observations and generate the Meteorological Terminal Aviation Routine 152 

Weather Report (METAR) and Aviation Selected Special Weather (SPECI) report. ASOS is 153 
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installed at more than 900 airports across the United States, and the data from 80 stations over 154 

the Northeast U.S. are used in this study (Fig. 1c). The wind speed at observational locations 155 

are matched with the modeled wind speed using bilinear interpolation (nested grid at 2 km × 2 156 

km grid spacing). 157 

3. Methodology 158 

Two statistical post-processing methods, the Simple Linear Regression (SLR) and 159 

Bayesian Linear Regression (BLR) are applied for error correction of the modeled wind speed. 160 

Thirteen storms are used for the training dataset, and four storms for the out-of-sample 161 

application (validation). The first application uses a chronological sequence to select the storms 162 

for the training dataset. The second application uses all possible combinations of the thirteen 163 

storms to compose the training dataset, regardless of the date of occurrence. The two regression 164 

methods are described in sections 3a and b; section 3c presents details on the training scheme 165 

and section 3d includes information about data processing and statistical metrics.  166 

a. Simple Linear Regression (SLR) 167 

The SLR model consists of the mean and variance function (Weisberg 2005), defined 168 

as follows: 169 

 𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 (1) 

   

Intercept 𝛽𝛽0 is the value of 𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) when 𝑥𝑥 equals zero, and the slope 𝛽𝛽1 is the rate of 170 

change in 𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) for a unit change in 𝑋𝑋, respectively. The unknown parameters 𝛽𝛽0 and 171 

𝛽𝛽1 are estimated from the modeled-observed wind speed pairs given the independent and 172 

dependent variable vector, 𝑋𝑋 and 𝑌𝑌. 173 
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In this study, the SLR model with a single predictor (wind speed at 10m) is developed 174 

for WRF and ICLAMS separately. To evaluate the estimators, storms are selected to arrange the 175 

training datasets first, and each estimator 𝛽𝛽0 and 𝛽𝛽1 is calculated from the training storms by 176 

the ordinary least squares (OLS) method as follows: 177 

 
�̂�𝛽1 = �(𝑥𝑥𝑖𝑖 − �̅�𝑥)

𝑛𝑛

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)/�(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
𝑛𝑛

𝑖𝑖=1

 
(2) 

 �̂�𝛽0 = 𝑦𝑦� − �̂�𝛽1�̅�𝑥 (3) 

where �̅�𝑥, 𝑦𝑦� are the averages of modeled values 𝑥𝑥 and observed values 𝑦𝑦 in the training 178 

datasets. Since a linear relationship between observed and modeled wind speed exists, this 179 

relationship points towards the possibility of model prediction correction (Sweeney et al. 2013). 180 

The SLR method is developed for each station because the linear relationship is spatially 181 

variable (station to station) and the spatial error heterogeneity must be preserved in the results. 182 

Therefore, the SLR analysis is implemented for each station (total of 80 stations) by the OLS 183 

method, and overall the final SLR model for WRF and ICLAMS is given as: 184 

 𝑌𝑌� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 = �̂�𝛽0,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 + �̂�𝛽1,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 (4) 

where �̂�𝛽0,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 , �̂�𝛽1,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  are the estimators of station m evaluated from the 185 

training dataset, and 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 is the predictor of the station 𝑚𝑚 from the WRF or ICLAMS 186 

out-of-sample storms. 𝑌𝑌� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  is the final product of the SLR model for station 𝑚𝑚. 187 

b. Bayesian Linear Regression (BLR) 188 

BLR is implemented as a new approach to improve WRF and ICLAMS 10-m wind 189 

speed fields. Bayesian statistics are based on Bayes’ theorem that deals with uncertainty of 190 

unknown parameters, and the parameters are basically inferred to probabilistic forms from the 191 

observed data under the Bayesian framework (Chu and Zhao 2011). The Bayesian formula to 192 



10 

 

infer the unknown parameter vector 𝜃𝜃 is thus governed by: 193 

 
𝑝𝑝(𝜃𝜃|𝑦𝑦) =

𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)
𝑝𝑝(𝑦𝑦)  

(5) 

where 𝑝𝑝(𝜃𝜃|𝑦𝑦) is the posterior probability density function (PDF) of 𝜃𝜃 given the observed 194 

data information 𝑦𝑦 , 𝑝𝑝(𝑦𝑦|𝜃𝜃)  is the likelihood function, 𝑝𝑝(𝜃𝜃)  is the prior PDF for the 195 

unknown parameter vector of 𝜃𝜃 , and 𝑝𝑝(𝑦𝑦)  is the PDF of the observation vector 𝑦𝑦 . 196 

Considering the continuous case for the Bayes’ theorem, Eq. (5) is formulated as follows: 197 

  
𝑝𝑝(𝜃𝜃|𝑦𝑦) =

𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)
∫𝑝𝑝(𝑦𝑦|𝜃𝜃) 𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃

 
(6) 

In this study, two controlled variables produced from WRF and ICLAMS are used in 198 

the BLR, so the normal linear model is regarded as a normal multiple regression form defined 199 

by two predictor variables. In vector form, the normal multiple regression equation is defined 200 

by: 201 

 𝑦𝑦 = 𝛽𝛽𝑋𝑋 + 𝜀𝜀 (7) 

where: 𝑦𝑦 is a 𝑛𝑛 × 1 vector of observations; 𝑋𝑋 is a 𝑛𝑛 × 𝑝𝑝 matrix of independent variables 202 

incorporating the unit matrix of the first column for the intercepts 𝛽𝛽0; 𝛽𝛽 is a 𝑝𝑝 × 1 vector of 203 

regression coefficients (𝛽𝛽0 ,  𝛽𝛽1 ,  𝛽𝛽2) ; and the error term is 𝜀𝜀 ~ 𝑁𝑁(0, 𝐼𝐼𝜎𝜎2)  with the 204 

unknown dispersion parameter 𝜎𝜎2. After considering the elements of the parameter vector 𝜃𝜃 =205 

[𝛽𝛽0,𝛽𝛽1,𝛽𝛽2,𝜎𝜎2], Eq. (6) becomes: 206 

 𝑝𝑝(𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜎𝜎2|𝑦𝑦)

=
𝑝𝑝(𝑦𝑦|𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜎𝜎2)𝑝𝑝(𝛽𝛽0,𝛽𝛽1,𝛽𝛽2,𝜎𝜎2)

∫∫∫∫𝑝𝑝(𝑦𝑦|𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜎𝜎2)𝑝𝑝(𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜎𝜎2)𝑑𝑑𝛽𝛽0𝑑𝑑𝛽𝛽1𝑑𝑑𝛽𝛽2𝑑𝑑 𝜎𝜎2
 

(8) 

It is assumed that the posterior probability distribution is in the same family as the 207 
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prior probability distribution and prior information of 𝜎𝜎2 can be inferred. The posterior mean 208 

of 𝛽𝛽 can be calculated by Eq. (9) (Cattin et al. 1983; Zellner 1996; O’Hagan 2004; Sorensen 209 

and Gianola 2002; Walter et al. 2007; Walter and Augustin 2010):  210 

 
�̅�𝛽 = �

�̅�𝛽0
�̅�𝛽1
�̅�𝛽2
� = �𝑋𝑋𝑇𝑇𝑋𝑋 + 𝑉𝑉𝛽𝛽−1�

−1
(𝑋𝑋𝑇𝑇𝑦𝑦 + 𝑉𝑉𝛽𝛽−1𝜇𝜇𝛽𝛽) 

𝑦𝑦 = �

𝑂𝑂𝑂𝑂𝑂𝑂1
𝑂𝑂𝑂𝑂𝑂𝑂2
⋮

𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛

�  𝑋𝑋 = �

1
1

𝑥𝑥1𝑊𝑊𝑊𝑊𝑊𝑊
𝑥𝑥2𝑊𝑊𝑊𝑊𝑊𝑊

𝑥𝑥1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑥𝑥2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

⋮
1

⋮
𝑥𝑥𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊

⋮
𝑥𝑥𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

�      𝑉𝑉𝛽𝛽 = �
𝜎𝜎02 0 0
0 𝜎𝜎12 0
0 0 𝜎𝜎22

�   𝜇𝜇𝛽𝛽 = �
𝜇𝜇0
𝜇𝜇1
𝜇𝜇2
� 

(9) 

where: 𝑦𝑦 is the matrix of 10-m observed wind speed for n time steps; X is the matrix of WRF 211 

and ICLAMS wind speed for n time steps; 𝑉𝑉𝛽𝛽 is a diagonal matrix including three prior 212 

variances which correspond to each element of �̅�𝛽; and 𝜇𝜇𝛽𝛽  is a prior mean matrix. It is 213 

assumed a priori that the best model will be a simple unbiased average of the two simulations, 214 

implying a mean vector of 𝜇𝜇𝛽𝛽 = �
0

0.5
0.5
�. Certainty about that assumption is defined by the size 215 

of the prior variances (𝜎𝜎𝑖𝑖2). To rely more on the data to inform the final model, the prior 216 

variances are made much larger. In an extreme case, as the prior variances go to infinity, 217 

Bayesian posterior estimates will match the OLS estimates. As the prior variances get smaller, 218 

the results will shrink toward the a priori assumptions. Shrinkage of this type will allow the 219 

model to be more robust in the presence of outliers and other strange and influential data. In 220 

order to develop BLR using Eq. (9), optimal prior variances are searched with the matrix 221 

representing the prior mean (𝜇𝜇𝛽𝛽). The final BLR model based on WRF and ICLAMS is 222 

formulated as follows: 223 
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 𝑌𝑌� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 = �̅�𝛽0,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 + �̅�𝛽1,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚𝑋𝑋𝑊𝑊𝑊𝑊𝑊𝑊,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚

+ �̅�𝛽2,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 

(10) 

where �̅�𝛽0,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  is the intercept of the BLR equation, �̅�𝛽1,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  and 224 

�̅�𝛽2,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  denote the regression coefficients for the two predictor variables 225 

𝑋𝑋𝑊𝑊𝑊𝑊𝑊𝑊,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 and 𝑋𝑋𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚 for station m. 𝑌𝑌� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑚𝑚  is the adjusted 226 

10-m wind speed field for station 𝑚𝑚 using the BLR method. 227 

c. Training scheme 228 

The regression coefficients for SLR and BLR can be estimated using a variety of 229 

training datasets. To investigate the sensitivity of the results to training period length, a 230 

variation in the number of storms as well as a change in the chronological order of the training 231 

dataset are examined. For instance, in the case of using one storm for the training dataset, SLR 232 

is implemented for each station, and then the number of storms is gradually increased to make 233 

different combinations. Among the seventeen storms, thirteen storms from 2004 to 2011 are 234 

selected as training storms and the other four storms are used for out-of-sample 235 

applications/validations, respectively. The four storms represent significant storms over the 236 

Northeast U.S. during 2011 to 2013: Hurricane Irene (2011), Hurricane Sandy (2012), 237 

November 2012 storm (affected by Hurricane Sandy) and February 2013 blizzard (maximum 238 

1-hour wind speed from 80 inland stations: 21, 25, 22, 24 m/s for Irene, Sandy, November 2012 239 

storm and February 2013 blizzard). 240 

In the first approach, an increasing number of storms in chronological order are 241 

employed. The second approach consists of training datasets composed of all possible 242 

combinations of the thirteen storms to analyze the behavior of R2, RMSE, BIAS and CRMSE 243 

in conformity with changes in combinations. Each quantity of combination using different 244 
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number of storms can be calculated by 𝑛𝑛!/(𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)!) which represents the number of 𝑟𝑟-245 

combinations from a given set of 𝑛𝑛 elements (𝑟𝑟 is an integer; and 1 ≤ 𝑟𝑟 ≤ 13, 𝑛𝑛 = 13). 246 

Specifically, in the case of using a single storm, thirteen individual storms constitute the 247 

training dataset and, in the case of using two storms, seventy eight training datasets are required 248 

(Table 3). The experiments for all possible combinations (with a total of 8191 training datasets, 249 

Table 3) are implemented for each observation station for SLR and BLR. 250 

The BLR approach for the first application has three phases (Fig. 2): (1) Random 251 

selection of 10,000 prior variance sets (Vβ, Eq. 9) within the interval [10-10, 1]. Each variance 252 

set (out of the 10,000) is used to estimate �̅�𝛽 (Eq. 9) for each station using all training storms. 253 

The estimated �̅�𝛽 is applied to individual storms of the training dataset to compute the global 254 

RMSE for each storm and each station (Phase 1 in Fig.2). (2) The RMSE that corresponds to 255 

each variance set is summed over all 𝑘𝑘 storms (Phase 2 in Fig.2). (3) The optimal prior 256 

variances that corresponded to the minimum summation of the RMSE from phase 2, are used 257 

for the calculation of the final �̅�𝛽 for each station which is then applied to out-of-sample storms 258 

(Phase 3 in Fig. 2). 259 

The BLR procedure demands a relatively longer computation time than SLR since it 260 

incorporates a phase to sample 10,000 prior variance sets. To reduce the computational time for 261 

BLR experiments related to all possible storm combinations, it is necessary to use fewer 262 

random samples of variance sets, instead of the previous 10,000. The variation of the RMSE 263 

from all cases, employing one up to thirteen storms for the training dataset, is analyzed to 264 

determine the reasonable number of prior variance samples that would reduce the 265 

computational cost and succeed in minimizing the RMSE similar to the 10,000 variance sets. 266 

RMSE variability with increasing sample size is quantified by calculating the 267 
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normalized difference of RMSE (NDiff) from the final minimized RMSE of all 10,000 samples. 268 

The normalized difference of RMSE is calculated as follows: 269 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  

�min
𝑖𝑖∈𝑗𝑗

�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖
𝑘𝑘
𝑛𝑛=1 �,1≤𝑗𝑗≤10,000�− min

𝑖𝑖∈10000
�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖

𝑘𝑘
𝑛𝑛=1 �

min
𝑖𝑖∈10,000

�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖
𝑘𝑘
𝑛𝑛=1 �

×

100%  

 

where: 𝑁𝑁 is the number of variance sets in the range of 1 and 10000; 𝑗𝑗 is the number 

of variance sets to be used for reduction of the computational cost in the range of 1 

and 10000; 𝑘𝑘 is the number of storms.   

For example, if 2 storms and 20 variance sets are used to calculate NDiff: 

(11) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
�min
𝑖𝑖∈20

�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖
2
𝑛𝑛=1 ��− min

𝑖𝑖∈10000
�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖

2
𝑛𝑛=1 �

min
𝑖𝑖∈10000

�∑ 𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛,   𝑖𝑖
2
𝑛𝑛=1 �

× 100%  270 

All cases commonly display that the normalized difference of RMSE values are 271 

decreased near the 20 variance sets (Fig. 3). Thus, 20 samples are identified as a proper sample 272 

size for prior variance sets and are used to implement BLR for the all-storm combinations. 273 

d. Data processing and statistical metrics 274 

The first 6 hours are regarded as the model spin-up time and are discarded from the 275 

analysis. The missing and zero values for 10-m wind speed observations are not included in the 276 

modeled-observed pairs. Five statistical metrics that offer complementary views on the model 277 

and regression performances are used. To evaluate the impact of regression techniques on the 278 

10-m modeled wind speed, the metrics are calculated for raw WRF, raw ICLAMS, WRFSLR, 279 

ICLAMSSLR and BLR. The five statistical metrics used in this study are: coefficient of 280 

determination (R2), root mean square error (RMSE), mean bias (BIAS), centered root mean 281 
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square error (CRMSE; Murphy 1988; Taylor 2001; Delle Monache et al. 2011), and skill score 282 

(SS) which are determined as follows: 283 

 

𝑅𝑅2 =

⎣
⎢
⎢
⎡ 𝑁𝑁 ∑ (𝑋𝑋 ∙ 𝑌𝑌) − (∑ 𝑋𝑋)(∑ 𝑌𝑌)𝑁𝑁𝑁𝑁𝑁𝑁

�[𝑁𝑁∑ 𝑋𝑋2 − (∑ 𝑋𝑋)𝑁𝑁
2][𝑁𝑁∑ 𝑌𝑌2 − (∑ 𝑌𝑌)𝑁𝑁

2]𝑁𝑁𝑁𝑁 ⎦
⎥
⎥
⎤
2

 

(12) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �

1
𝑁𝑁
�(𝑋𝑋 − 𝑌𝑌)2
𝑁𝑁

 
(13) 

 

𝐵𝐵𝐼𝐼𝐵𝐵𝑅𝑅 =
1
𝑁𝑁
�(𝑋𝑋 − 𝑌𝑌)
𝑁𝑁

 

(14) 

 

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �
1
𝑁𝑁
�[(𝑋𝑋 − 𝑋𝑋�) − (𝑌𝑌 − 𝑌𝑌�)]2
𝑁𝑁

 

(15) 

where: the modeled value is represented by 𝑋𝑋, the observed wind speed by 𝑌𝑌,  𝑁𝑁 is the total 284 

number of data points, and 𝑋𝑋� and 𝑌𝑌� are the modeled and observed wind speed averages over 285 

the 𝑁𝑁 values used in the calculations. RMSE is used to evaluate model performances and the 286 

crucial objective function aiming to mitigate errors for the BLR approach. CRMSE is a 287 

measure of the random component of RMSE, while the systematic component is represented by 288 

the BIAS. 289 

To measure the relative improvement of the regression techniques, the Skill Score (SS) 290 

with regards to RMSE and R2 (e.g., Wilks 1995; Libonati et al. 2008; Idowu and deW 291 

Rautenbach 2009; Delle Monache et al. 2011) is calculated. An example of the SS calculation is 292 

shown in Eq. (16) and (17): 293 

𝑅𝑅𝑅𝑅𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑠𝑠𝑟𝑟 − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐼𝐼𝐼𝐼𝑊𝑊/𝐵𝐵𝐼𝐼𝑊𝑊

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑠𝑠𝑟𝑟
× 100% 

(16) 
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𝑅𝑅𝑅𝑅𝑊𝑊2 =
𝑅𝑅2𝐼𝐼𝐼𝐼𝑊𝑊/𝐵𝐵𝐼𝐼𝑊𝑊 − 𝑅𝑅2𝑟𝑟𝑠𝑠𝑟𝑟

𝑅𝑅2𝑟𝑟𝑠𝑠𝑟𝑟
× 100% 

(17) 

 Eq. (16) and Eq. (17) estimate the relative improvement of the SLR and BLR approaches 294 

versus raw-WRF and raw-ICLAMS predictions. Positive values of 𝑅𝑅𝑅𝑅𝑊𝑊𝐼𝐼𝐼𝐼𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑊𝑊2 indicate 295 

that the suggested regression method improves the raw model outputs. 296 

4. Results and discussion 297 

a. Chronologically-ordered storm combinations for the training dataset 298 

The variation of R2, RMSE, BIAS and CRMSE (Figs. 4 and 5) for each out-of-sample 299 

storm shows an increase (R2)/decrease (RMSE, BIAS and CRMSE) when the number of 300 

storms of the training dataset increases. All three models (WRFSLR (triangles), ICLAMSSLR 301 

(squares) and BLR (circles)) exhibit poor performance indicated by low R2 and high RMSE, 302 

BIAS and CRMSE when employing one storm for training, which denotes that one historical 303 

storm is not sufficient to improve wind speed predictions of future storms. The statistical 304 

metrics progressively improve with increasing number of storms in the training dataset, and the 305 

trend reaches a plateau after eight to ten storms to an almost constant value. This is indicative 306 

of the number of storms that will be efficient and effective for correcting the modeled wind 307 

speed error. BLR is consistently performing better across all storm cases with the only 308 

exception of the November 2012 storm, where BLR and ICLAMSSLR share comparable 309 

performances. 95% bootstrapped confidence intervals are included for all statistical metrics and 310 

out-of-sample storms (shown in Figs. 4,5). Non-overlapping bootstrapped intervals show that 311 

results are significantly different when looking at the RMSE for Irene and Sandy, for the 312 

maximum number of storms in the training dataset. For the latest two out-of-sample storms, 313 
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ICLAMSSLR and BLR are not significantly different in terms of the RMSE.    314 

The mean bias is almost entirely removed for most out-of-sample storms with all 315 

models being successful (Fig. 5). The mean bias of raw model outputs for the four storms is in 316 

the range of -1.0 m/s and 0.5 m/s. At least 5 storms are required for the success of bias removal 317 

by SLR and BLR (Fig. 5). Hurricane Sandy wind speed exhibits a positive bias even with the 318 

inclusion of 13 storms in the training dataset and BLR has higher bias than WRF or ICLAMS. 319 

This is attributed to the fact that model predictions of Sandy exhibit distinctly different error 320 

characteristics than the other storms in the database. To explore this behavior further, Hurricane 321 

Irene was included in the training dataset (14 storms instead of 13) as the storm closest in 322 

character to Hurricane Sandy. Sandy, November 2012 storm and February 2013 blizzard are 323 

kept as the out-of-sample storms and the results did not show significant differences (not shown 324 

here). The average RMSE for Sandy changed only by 0.01 m/s and the spatial distribution was 325 

not significantly affected. The case of Sandy shows that the mean bias can be reduced when the 326 

available number of training storms increases.  Bias removal is consistent with the systematic 327 

error removal that is an expected outcome of regression techniques. The random component of 328 

RMSE, denoted by centered RMSE (CRMSE), has a decreasing trend for all storms as the 329 

number of training storms increase (Fig. 5). For both RMSE and CRMSE, BLR results are 330 

more successful than SLR, with the exception of November 2012 storm (as previously noted).  331 

So far, results from the regression techniques are discussed without mentioning the 332 

“raw” atmospheric model performance. The correlation increases to 0.6-0.8 and the RMSE 333 

decreases to 1.7-2.0 m/s, for the different out-of-sample storms. Distribution of weights [beta 334 

coefficients, Eq. (9)] given at NWP models in the BLR approach (including 13 storms in the 335 

training dataset) shows a slight “preference” towards the ICLAMS model (Fig. 6). These beta 336 
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values give the optimal RMSE in the training and are subsequently applied to all out-of-sample 337 

storms but vary for each station. To put things in perspective, statistical metrics employing the 338 

raw model outputs are presented using the skill score (SS). 339 

The skill score (SS; the relative improvement in percent for a given metric), grouped 340 

by storm and raw model output, indicates improvement by BLR compared to SLR (Table 4), 341 

marked by increased SS values for BLR versus raw model outputs for all storms. This indicates 342 

that the BLR approach has been successful in improving the RMSE and R2 statistical metrics 343 

for wind speed compared to raw model outputs. Additionally, the RMSE and R2 are analyzed 344 

for each model normalized by BLR, in order to identify how BLR performs over the other 345 

methods. Normalized RMSE values greater than one indicate that BLR performs better (all 346 

normalized RMSE values are greater than one with the exception of November 2012 storm and 347 

ICLAMSSLR; Table 5). Inversely, normalized R2 smaller than one, demonstrates that BLR 348 

outperforms the other model results in the out-of-sample storms. These normalized RMSE 349 

and R2 values listed in Table 5, show the same patterns in terms of the BLR performance. 350 

Normalized metrics indicate that BLR improves the wind speed statistical metrics for Irene, 351 

Sandy and the February 2013 storm. ICLAMSSLR performs as close, if not better, than BLR for 352 

the November 2012 storm. The results from the normalized metrics are consistent with the 353 

conclusions from the confidence intervals discussed previously.  354 

Finally, the spatial distribution of RMSE was analyzed, with thirteen storms as training 355 

dataset for all out-of-sample storms (Fig. 7). In each plot, colored circles represent the RMSE 356 

value calculated using obervations at each station location. All suggested regression methods in 357 

this study sucessfully reduce the RMSE of the raw WRF and raw ICLAMS for almost all 358 

stations and storms. The RMSE in raw model outputs ranges between 1.6 and 3.5 m/s, whereas 359 
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using regression techniques, a large number of stations show decreased values within a range of 360 

1.0 to 2.5 m/s (more abundance of lower range RMSE values). Overall, BLR is shown to be an 361 

effective method to reduce RMSE for the stations of our case study, with highest reductions in 362 

the range of 17%-32% when compared to raw model outputs. More details on the timeseries 363 

and RMSE values for individual stations are provided in Table S1 and Figs. S1-S4 pf the 364 

supplement. In addition, spatial distrbution of BIAS and CRMSE is provided in Figs. S5 and 365 

S6 of the supplement, for a more detailed view of the BLR efficiency at the station level.   366 

b. All-storm combinations for the training dataset 367 

In this section, the training dataset comprises of all possible storm combinations while 368 

increasing the number of storms.  The intention of this test is to define the sensitivity of BLR 369 

and SLR results to a random combination of storm sequences and denote the confidence that 370 

can be placed in the BLR method if a convergence in the results is achieved. The results 371 

showing 25th, 50th, 75th percentiles (horizontal bars), minimum and maximum (error bars) 372 

(Fig. 8 and 9) are similar to the chronologically ordered selection of training storms in the sense 373 

that the bias is almost entirely removed in most cases, and RMSE and CRMSE are decreased 374 

with the addition of storms in the training dataset. The variability of all metrics is clearly 375 

reduced by adding more storms in the training dataset (box whiskers plots in Fig. 8 and 9). 376 

Even at the combination of six or seven storms (largest number of combinations=1716, Table 3), 377 

the distribution is narrow. BLR starts with a relatively narrow width distribution compared to 378 

the other models, having higher R2 values and lower RMSE and CRMSE. For example, using a 379 

single training storm in the case of Irene (Fig. 8), statistical metrics for BLR exhibit the 380 

following ranges: R2=[0.73, 0.78], RMSE=[1.91, 2.17] (m/s) and CRMSE=[1.91, 2.10] (m/s). 381 

These ranges are narrower than those of WRFSLR (R2=[0.59, 0.74], RMSE=[2.07, 2.59] (m/s) 382 
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and CRMSE=[2.07, 2.52] (m/s)) and ICLAMSSLR (R2=[0.65, 0.72], RMSE= [2.19, 2.92] (m/s) 383 

and CRMSE=[2.16, 2.79] (m/s)). In addition, the median values corresponding to BLR (R2: 384 

0.76, RMSE: 2.05 m/s and CRMSE: 1.98 m/s) indicate statistically significant improvements 385 

when compared to the WRFSLR (R2: 0.68, RMSE: 2.28 m/s and CRMSE: 2.26 m/s) and 386 

ICLAMSSLR (R2: 0.68, RMSE: 2.32 m/s and CRMSE: 2.31 m/s).   387 

When the lowest possible RMSE is selected (minimum RMSE in the 12 storm 388 

combinations, Fig. 8 and 9) and used for the calculation of BLR weighting factors for the out-389 

of-sample application, there is no significant change in the average RMSE over all stations, 390 

neither in the spatial distribution of RMSE (not shown). The results from combining all 391 

possible storm sequences denotes a convergence in the wind prediction improvements by both 392 

chronological and all-combinations approach, giving confidence on the performance of the 393 

proposed BLR technique.   394 

6. Conclusions  395 

In this study, a simple linear regression (SLR) and a Bayesian linear regression (BLR) 396 

are introduced as post prediction error correction techniques, to improve modeled 10-m wind 397 

speed of storms that exhibit high wind speed occurrences. Both simple and Bayesian linear 398 

regressions rely on the training dataset and the appropriate selection of storms with similar 399 

weather characteristics. A selection of seventeen storms in total are used to study the efficiency 400 

of the two methods in reducing the wind speed systematic and random errors for station 401 

locations in Northeast United States (NE U.S.). Thirteen storms constitute the training dataset 402 

and four high impact storms (two hurricanes, one blizzard and one nor’easter) are used for the 403 

out-of-sample applications.       404 
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Both SLR and BLR reduce systematic and random errors for most out-of-sample storms. 405 

The statistical metrics and spatial distribution of root mean square error (RMSE) indicate that 406 

BLR is more successful in the surface wind speed error correction as it takes into account wind 407 

predictions from two atmospheric modeling systems. Such result is promising because the two-408 

model application reduces the computational cost associated with multi-model or single-model 409 

ensemble forecasts without compromising the accuracy of the wind speed error reduction. 410 

The selection of storms in the training dataset does not depend on the chronological 411 

sequence of storm occurrence but mostly on their abundance. The randomized experiment 412 

shows a good convergence of wind speed forecast improvements for all possible storm 413 

combinations, increasing the confidence in the proposed BLR technique. A suggestion that 414 

applies to the specific type of weather storms included in this work, is that ten to thirteen storms 415 

in the training dataset are sufficient to reduce the errors in the prediction by 20-30% for all 416 

stations compared to raw model outputs (Table 4) and up to 60% for individual stations (Fig. S7 417 

in the supplement). A selection based on occurrence (chronological sequence) is also 418 

considered sufficient. This conclusion allows for planning of real-time operational wind speed 419 

error correction using the BLR technique. 420 

Overall, this study has demonstrated that the application of two regression methods can 421 

improve the surface wind speed prediction from single and dual-model simulations. The dual-422 

model combination of the BLR approach is more skillful and merits further investigation. 423 

Future extensions of this work include distribution of optimized BLR coefficients to each grid 424 

point of the model domain to improve the modeled wind speed for all locations. Furthermore, 425 

beta-testing will be expanded to an operational set-up in the NE U.S. region, where the real-426 

time wind speed prediction of a storm using the two-modeling system will be corrected based 427 
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on historic storms included in the training dataset. This will be accomplished by running 428 

operationally both numerical weather prediction (NWP) models (WRF and RAMS/ICLAMS) 429 

daily with a 5-day forecast window (WRF is currently operational). The current practice of 430 

identifying a potential future storm by consulting the in-house NWP as well as other 431 

operational forecasts (e.g., National Weather Service (NWS), National Centers for 432 

Environmental Prediction (NCEP)), will be implemented, in which event, BLR will be applied 433 

to provide optimal dual-model wind speed predictions.   434 
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FIGURE LIST 717 

Figure 1. Model domains: (a) WRF and (b) RAMS/ICLAMS; (c) NCEP/NWS/NOAA stations 718 

over the NE U.S. (black circles) and elevation (m). 719 

Figure 2. A schematic diagram of the Bayesian Linear Regression (BLR) approach. 720 

Figure 3. RMSE normalized difference using different sample sizes for the BLR training 721 

datasets. 722 

Figure 4. Chronological storm sequence experiment: R2 and RMSE (m/s) variation by 723 

increasing the number of training storms for WRF SLR (triangles), ICLAMS SLR (squares), 724 

BLR (circles). The 95% bootstrap confidence intervals are indicated by the error bars for WRF 725 

SLR (blue), ICLAMS SLR (red), BLR (purple). 726 

Figure 5. As in Fig. 4, but for BIAS (m/s) and CRMSE (m/s). 727 

Figure 6. Cumulative distribution function (CDF) of the beta coefficients at 80 stations when 728 

including 13 storms in the training dataset (BLR = β0+β1∙WRF+β2∙ICLAMS).  729 

Figure 7. Spatial distribution of RMSE for the chronologically-ordered training dataset 730 

application. 731 

Figure 8. Randomized storm sequence experiment: R2 and RMSE (m/s) spread behavior 732 

related to the number of storms in the training dataset for WRF SLR (blue), ICLAMS SLR 733 

(red), BLR (purple). 734 

Figure 9. As in Fig. 8, but for BIAS (m/s) and CRMSE (m/s). 735 
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TABLE 1. WRF and ICLAMS configuration. 738 

 739 

 740 

 741 

 742 

 743 

  744 

   

 WRF ICLAMS 
Grid structure  3 grids  

Horizontal: 18-6-2 km 
Vertical: 27 levels (Ptop = 50 hPa) 

3 grids 
Horizontal: 18-6-2 km 

Vertical: 50 levels (Ptop = 60 hPa) 
Horizontal grid scheme Arakawa C grid Arakawa C grid 

Nesting 2-way nesting 2-way nesting 

Initial Conditions NCEP GFS (1° × 1°, 6-hour) NCEP FNL (1° × 1°, 6-hour) 

Cumulus scheme (per grid) Grell 3D scheme (Grell and 
Devenyi 2002) on the parent and 
second grids; no parameterization 

on the third grid 

Kain-Fritsch cummulus 
parameterization on the parent and 
second grids; no parameterization 

on the third grid 
Cloud microphysics Thompson et al. (2008) scheme 

 
 
 
 
 

 

Warm rain processes; Five ice 
condensate species; Two-moment 
bulk scheme (Walko et al. 1995; 

Meyers et al. 1997); Explicit cloud 
droplet activation scheme (Nenes 

and Seinfeld, 2003; Fountoukis and 
Nenes, 2005) with prescribed 

aerosols. 
Planetary boundary layer Yonsei scheme (Hong et al. 2006) Mellor- Yamada scheme (1982) 

Boundary Conditions SST (NCEP GFS); topography 
(USGS GTOPO30, 30”);  land 
cover (USGS, 30’’); soil texture 

(FAO, 5’; North-America 
STATSGO, 30”) 

SST daily; NDVI (USGS, 30’’); 
topography (NASA SRTM90 v4.1, 
3’’); land cover (USGS OGE, 30’’); 

soil texture (FAO, 2’) 

Radiation Goddard for short wave radiation 
(Chou and Suarez 1994); RRTM 

for long wave radiation (Mlawer et 
al. 1997) 

RRTM for short/long wave 
radiation (Mlawer et al. 1997) 

Land surface WRF NOAH (Tewari et al. 2004) LEAF-3 (Walko et al., 2000) 
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TABLE 2. Storm type and date (the duration of all simulations was 61h). 745 

   

Storms Model start date and time Storm type 

Nov 5th 2004 4 Nov 2004 1800 UTC Wind storm 

Dec 1st 2004 30 Nov 2004 1200 UTC Wind storm 

Apr 1-3rd 2005 1 Apr 2005 1800 UTC Rain/Wind storm  

Oct 16th 2005 15 Oct 2005 1800 UTC Wind storm 

Oct 24-25th 2005 24 Oct 2005 1800 UTC Nor’easter 

Jan 14-15th 2006 14 Jan 2006 0000 UTC Rain/Snow/Wind storm 

Jan 18th 2006 17 Jan 2006 0000 UTC High wind storm 

Feb 17th 2006 16 Feb 2006 1800 UTC High wind storm 

Apr 15-16th 2007 14 Apr 2007 1800 UTC Nor’easter 

Jan 6-8th 2009 7 Jan 2009 0000 UTC Ice Storm/Wind storm 

Mar 12-15th 2010 13 Mar 2010 0000 UTC Heavy rain/High wind storm  

Dec 26-27th 2010 25 Dec 2010 1800 UTC Blizzard 

Jan 11-12th 2011 11 Jan 2011 1800 UTC Heavy Snow storm 

Aug 28th 2011 28 Aug 2011 0000 UTC Hurricane (Irene) 

Oct 29th 2012 28 Oct 2012 1800 UTC Hurricane (Sandy) 

Nov 7th 2012 7 Nov 2012 0600 UTC Nor’easter 

Feb 8-9th 2013 8 Feb 2013 0000 UTC Blizzard 
(Source: NOAA, Significant Weather Events Archive; http://www.erh.noaa.gov/okx/stormtotals.html) 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

  756 
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TABLE 3. Number of possible storm sequence combinations for the training datasets. 757 

  

Number of storms (𝒓𝒓) Number of 𝒓𝒓-combinations  
1 13 
2 78 
3 286 
4 715 
5 1287 
6 1716 
7 1716 
8 1287 
9 715 
10 286 
11 78 
12 13 
13 1 

All possible combinations 8191 
 758 

  759 
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TABLE 4. Skill score (%) evaluated by RMSE and R2 of WRFSLR, ICLAMSSLR and BLR with 760 

Ne = 13 (Ne: Number of storms in the training dataset). 761 

    

Storm 

𝑺𝑺𝑺𝑺𝑹𝑹𝑹𝑹𝑺𝑺𝑹𝑹 (%)  𝑺𝑺𝑺𝑺𝑹𝑹𝟐𝟐(%) 

WRFSLR 
vs. 

WRFraw 

BLR 
vs. 

WRFraw 

ICLAMSSLR 
vs. 

ICLAMSraw 

BLR 
vs. 

ICLAMSraw 

 
WRFSLR 

vs. 
WRFraw 

BLR 
vs. 

WRFraw 

ICLAMSSLR 
vs. 

ICLAMSraw 

BLR 
vs. 

ICLAMSraw 

Irene 20.4 24.6 9.2  17.1 
 

12.0 15.7 8.0 14.5 

Sandy 16.6 22.0 15.1 18.3  21.0 32.7 16.7 23.7 

7 Nov. 
2012 24.4 31.9 21.9 21.7 

 
27.0 47.3 25.5 25.5 

8-9 Feb. 
2013 22.9 31.3 15.0 18.0  20.0 33.5 18.8 22.8 

 762 

 763 

 764 

 765 

 766 

  767 
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TABLE 5. Normalized RMSE and R2 by the relevant metrics for BLR with Ne = 13. 768 

    

Storm 
RMSE normalized by BLR  R2 normalized by BLR 

𝑊𝑊𝑅𝑅𝑊𝑊𝑟𝑟𝑠𝑠𝑟𝑟
𝐵𝐵𝐵𝐵𝑅𝑅

 
𝐼𝐼𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑟𝑟𝑠𝑠𝑟𝑟

𝐵𝐵𝐵𝐵𝑅𝑅
 

𝑊𝑊𝑅𝑅𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊
𝐵𝐵𝐵𝐵𝑅𝑅

 
𝐼𝐼𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝑊𝑊

𝐵𝐵𝐵𝐵𝑅𝑅
  

 𝑊𝑊𝑅𝑅𝑊𝑊𝑟𝑟𝑠𝑠𝑟𝑟
𝐵𝐵𝐵𝐵𝑅𝑅

 
𝐼𝐼𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑟𝑟𝑠𝑠𝑟𝑟

𝐵𝐵𝐵𝐵𝑅𝑅
 

𝑊𝑊𝑅𝑅𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊
𝐵𝐵𝐵𝐵𝑅𝑅

 
𝐼𝐼𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝑊𝑊

𝐵𝐵𝐵𝐵𝑅𝑅
  

Irene 1.33 1.21 1.06 1.10 
 

0.86 0.87 0.97 0.94 

Sandy 1.28 1.22 1.07 1.04 
 

0.75 0.81 0.91 0.94 

7  
Nov. 
2012 

 

1.47 1.28 1.11 1.00 

 

0.68 0.80 0.86 1.00 

8-9 
Feb. 
2013 

1.46 1.22 1.12 1.04 
 

0.75 0.81 0.90 0.97 

 769 

 770 

 771 

 772 

 773 

  774 
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 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

Figure 1. Model domains: (a) WRF and (b) RAMS/ICLAMS; (c) NCEP/NWS/NOAA stations 786 

over the NE U.S. (black circles) and elevation (m). 787 

  788 

 789 

 790 

 791 

 792 
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 793 

Figure 2. A schematic diagram of the Bayesian Linear Regression (BLR) approach. 794 

  795 
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 796 

 797 

Figure 3. RMSE normalized difference using different sample sizes for the BLR training 798 

datasets. 799 
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 800 

Figure 4. Chronological storm sequence experiment: R2 and RMSE (m/s) variation by 801 

increasing the number of training storms for WRFSLR (triangles), ICLAMSSLR (squares), BLR 802 

(circles). The 95% bootstrap confidence intervals are indicated by the error bars for WRFSLR 803 

(blue), ICLAMSSLR (red), BLR (purple). 804 
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 805 

Figure 5. As in Fig. 4, but for BIAS (m/s) and CRMSE (m/s). 806 

  807 
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 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

Figure 6. Cumulative distribution function (CDF) of the beta coefficients at 80 stations when 825 

including 13 storms in the training dataset (BLR = β0+β1∙WRF+β2∙ICLAMS).  826 

 827 

  828 
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 829 

 830 

Figure 7. Spatial distribution of RMSE for the chronologically-ordered training dataset 831 

application. 832 
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 833 

Figure 8. Randomized storm sequence experiment: R2 and RMSE (m/s) spread behavior (bar: 834 

median, box: interquartile range, whiskers: range, and error bars: minimum and maximum) 835 

related to the number of storms in the training dataset for WRFSLR (blue), ICLAMSSLR (red), 836 

BLR (purple). 837 
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 838 

 839 

Figure 9. As in Fig. 8, but for BIAS (m/s) and CRMSE (m/s). 840 

 841 


